Shift Radix Systems II

J. M. Thuswaldner

Department of Mathematics and Statistics
University of Leoben
Austria

Liège, June 2011
Shift Radix Systems

Definition (cf. Akiyama et al., 2005)

Let \(r \in \mathbb{R}^d \) and

\[
\tau_r : \mathbb{Z}^d \rightarrow \mathbb{Z}^d, \quad x = (x_1, \ldots, x_d) \rightarrow (x_2, \ldots, x_d, -\lfloor rx \rfloor).
\]

The dynamical system \((\mathbb{Z}^d, \tau_r)\) is called a shift radix system (SRS). The SRS satisfies the finiteness property if

\[
\forall x \in \mathbb{Z}^d : \exists k \in \mathbb{N} \text{ such that } \tau_r^k(x) = 0.
\]
Notations

Notation

- For $\mathbf{r} = (r_0, \ldots, r_{d-1}) \in \mathbb{R}^d$, denote by $R(\mathbf{r})$ the companion matrix with characteristic polynomial $\chi_{\mathbf{r}}(x) = x^d + r_{d-1}x^{d-1} + \cdots + r_0$.
- $\mathcal{E}_d := \{ \mathbf{r} \in \mathbb{R}^d \mid \rho(R(\mathbf{r})) < 1 \}$.

Proposition

If $\mathbf{r} \in \mathcal{E}_d$, then the SRS $(\mathbb{Z}^d, \tau_\mathbf{r})$ either satisfies the finiteness property or, for all $\mathbf{x} \in \mathbb{Z}^d$, the sequence $(\tau_\mathbf{r}^n(\mathbf{x}))_{n \in \mathbb{N}}$ is ultimately periodic.
Notations

Notation

- For $\mathbf{r} = (r_0, \ldots, r_{d-1}) \in \mathbb{R}^d$, denote by $R(\mathbf{r})$ the companion matrix with characteristic polynomial
 \[\chi_{\mathbf{r}}(x) = x^d + r_{d-1}x^{d-1} + \cdots + r_0. \]
- $\mathcal{E}_d := \{ \mathbf{r} \in \mathbb{R}^d \mid \rho(R(\mathbf{r})) < 1 \}$.

Proposition

If $\mathbf{r} \in \mathcal{E}_d$, then the SRS $(\mathbb{Z}^d, \tau_{\mathbf{r}})$ either satisfies the finiteness property or, for all $\mathbf{x} \in \mathbb{Z}^d$, the sequence $(\tau_{\mathbf{r}}^n(\mathbf{x}))_{n \in \mathbb{N}}$ is ultimately periodic.
Characterization of the finiteness property

Quadratic SRS with finiteness property
SRS-tiles

Definition

Let $\mathbf{r} \in \mathcal{E}_d$ and $\mathbf{x} \in \mathbb{Z}^d$. The set

$$\mathcal{I}_r(\mathbf{x}) = \lim_{n \to \infty} R(\mathbf{r})^n \tau_r^{-n}(\mathbf{x})$$

(limit with respect to the Hausdorff metric) is called the SRS tile associated with \mathbf{r}. $\mathcal{I}_r(\mathbf{0})$ is called the central SRS tile associated with \mathbf{r}.
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
"Taking the limit" for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
Let $r = \left(\frac{4}{5}, -\frac{49}{50} \right)$.
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50}\right) \).
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
"Taking the limit" for a central tile

Let $r = \left(\frac{4}{5}, -\frac{49}{50} \right)$.
“Taking the limit” for a central tile

Let $r = \left(\frac{4}{5}, -\frac{49}{50} \right)$.
“Taking the limit” for a central tile

Let \(r = \left(\frac{4}{5}, -\frac{49}{50} \right) \).
Examples of SRS tiles
Some SRS tiles for $r = \left(\frac{9}{10}, -\frac{11}{20} \right)$
Proposition

For each \(r \in \mathcal{E}_d \), we have

- \(\mathcal{I}_r(x) \) is compact for all \(x \in \mathbb{Z}^d \).
- The family \(\{ \mathcal{I}_r(x) \mid x \in \mathbb{Z}^d \} \) is locally finite.
- \(\mathcal{I}_r(x) \) satisfies the set equation

\[
\mathcal{I}_r(x) = \bigcup_{y \in \mathcal{R}^{-1}_r(x)} R(r) \mathcal{I}_r(y).
\]

\[
\bigcup_{x \in \mathbb{Z}^d} \mathcal{I}_r(x) = \mathbb{R}^d.
\]

Such set equations play a role for \textbf{S-adic tiles} (V. Berthé, W. Steiner, T., in progress).
Basic properties of SRS tiles

Proposition

For each $r \in \mathcal{E}_d$, we have

- $\mathcal{T}_r(x)$ is compact for all $x \in \mathbb{Z}^d$.
- The family $\{\mathcal{T}_r(x) \mid x \in \mathbb{Z}^d\}$ is locally finite.
- $\mathcal{T}_r(x)$ satisfies the set equation

$$\mathcal{T}_r(x) = \bigcup_{y \in \mathcal{T}_r^{-1}(x)} R(r) \mathcal{T}_r(y).$$

$$\bigcup_{x \in \mathbb{Z}^d} \mathcal{T}_r(x) = \mathbb{R}^d.$$

Such set equations play a role for S-adic tiles (V. Berthé, W. Steiner, T., in progress).
Basic properties of SRS tiles

Proposition

For each $r \in \mathcal{E}_d$, we have

- $\mathcal{T}_r(x)$ is compact for all $x \in \mathbb{Z}^d$.
- The family $\{\mathcal{T}_r(x) \mid x \in \mathbb{Z}^d\}$ is locally finite.
- $\mathcal{T}_r(x)$ satisfies the set equation

$$\mathcal{T}_r(x) = \bigcup_{y \in \mathcal{T}_r^{-1}(x)} R(r)\mathcal{T}_r(y).$$

$$\bigcup_{x \in \mathbb{Z}^d} \mathcal{T}_r(x) = \mathbb{R}^d.$$

Such set equations play a role for S-adic tiles (V. Berthé, W. Steiner, T., in progress).
Basic properties of SRS tiles

Proposition

For each $r \in \mathcal{E}_d$, we have

- $\mathcal{T}_r(x)$ is compact for all $x \in \mathbb{Z}^d$.
- The family $\{\mathcal{T}_r(x) | x \in \mathbb{Z}^d\}$ is locally finite.
- $\mathcal{T}_r(x)$ satisfies the set equation

$$\mathcal{T}_r(x) = \bigcup_{y \in \mathcal{T}^{-1}_r(x)} R(r) \mathcal{T}_r(y).$$

$$\bigcup_{x \in \mathbb{Z}^d} \mathcal{T}_r(x) = \mathbb{R}^d.$$

Such set equations play a role for S-adic tiles (V. Berthé, W. Steiner, T., in progress).
Compactness: Hausdorff limits are closed by definition. Boundedness follows from the contractivity of $R(r)$.

Local finiteness: $T_r(x)$ is bounded (uniformly in x) and the set of “base points” \mathbb{Z}^d is a lattice.

Set equation: Follows immediately from the definition of the tiles. Just put one of the $R(r)$ of the product outside the limit.

Covering of \mathbb{R}^d: The lattice \mathbb{Z}^d is obviously contained in the union. Thus, by the set equation, the same is true for $R(r)^k \mathbb{Z}^d$. Contractivity of $R(r)$, compactness, and local finiteness yield the result.
Compactness: Hausdorff limits are closed by definition. Boundedness follows from the contractivity of $R(r)$.

Local finiteness: $T_r(x)$ is bounded (uniformly in x) and the set of “base points” \mathbb{Z}^d is a lattice.

Set equation: Follows immediately from the definition of the tiles. Just put one of the $R(r)$ of the product outside the limit.

Covering of \mathbb{R}^d: The lattice \mathbb{Z}^d is obviously contained in the union. Thus, by the set equation, the same is true for $R(r)^k \mathbb{Z}^d$. Contractivity of $R(r)$, compactness, and local finiteness yield the result.
Proofs

Compactness: Hausdorff limits are closed by definition. Boundedness follows from the contractivity of $R(r)$.

Local finiteness: $\mathcal{T}_r(x)$ is bounded (uniformly in x) and the set of “base points” \mathbb{Z}^d is a lattice.

Set equation: Follows immediately from the definition of the tiles. Just put one of the $R(r)$ of the product outside the limit.

Covering of \mathbb{R}^d: The lattice \mathbb{Z}^d is obviously contained in the union. Thus, by the set equation, the same is true for $R(r)^k\mathbb{Z}^d$. Contractivity of $R(r)$, compactness, and local finiteness yield the result.
Proofs

Compactness: Hausdorff limits are closed by definition. Boundedness follows from the contractivity of $R(r)$.

Local finiteness: $\mathcal{I}_r(x)$ is bounded (uniformly in x) and the set of “base points” \mathbb{Z}^d is a lattice.

Set equation: Follows immediately from the definition of the tiles. Just put one of the $R(r)$ of the product outside the limit.

Covering of \mathbb{R}^d: The lattice \mathbb{Z}^d is obviously contained in the union. Thus, by the set equation, the same is true for $R(r)^k\mathbb{Z}^d$. Contractivity of $R(r)$, compactness, and local finiteness yield the result.
Periodic points

Definition
For \(r \in \mathbb{R}^d \), a point \(z \in \mathbb{Z}^d \) is called purely periodic (with respect to \(\tau_r \)) if \(\tau_r^k(z) = z \) for some \(k \geq 1 \).

Proposition
For each \(r \in \mathcal{E}_d \), there exist only finitely many purely periodic points. \(0 \) is the only purely periodic point if and only if \((\mathbb{Z}^d, \tau_r)\) has the finiteness property.

SRS tiles and the origin
Let \(r \in \mathcal{E}_d \).
- \(0 \in \mathcal{T}_r(x) \) if and only if \(x \) is purely periodic.
- \((\mathbb{Z}^d, \tau_r)\) has the finiteness property if and only if \(0 \in \mathcal{T}_r(0) \setminus \bigcup_{x \neq 0} \mathcal{T}_r(x) \) is an inner point of the central tile.
Periodic points

Definition
For $r \in \mathbb{R}^d$, a point $z \in \mathbb{Z}^d$ is called purely periodic (with respect to τ_r) if $\tau_r^k(z) = z$ for some $k \geq 1$.

Proposition
For each $r \in E_d$, there exist only finitely many purely periodic points. 0 is the only purely periodic point if and only if (\mathbb{Z}^d, τ_r) has the finiteness property.

SRS tiles and the origin
Let $r \in E_d$.
- $0 \in T_r(x)$ if and only if x is purely periodic.
- (\mathbb{Z}^d, τ_r) has the finiteness property if and only if $0 \in T_r(0) \setminus \bigcup_{x \neq 0} T_r(x)$ is an inner point of the central tile.
Periodic points

Definition

For \(r \in \mathbb{R}^d \), a point \(z \in \mathbb{Z}^d \) is called **purely periodic** (with respect to \(\tau_r \)) if \(\tau_r^k(z) = z \) for some \(k \geq 1 \).

Proposition

For each \(r \in \mathcal{E}_d \), there exist only finitely many purely periodic points. \(0 \) is the only purely periodic point if and only if \((\mathbb{Z}^d, \tau_r) \) has the finiteness property.

SRS tiles and the origin

Let \(r \in \mathcal{E}_d \).

- \(0 \in \mathcal{T}_r(x) \) if and only if \(x \) is purely periodic.
- \((\mathbb{Z}^d, \tau_r) \) has the finiteness property if and only if \(0 \in \mathcal{T}_r(0) \setminus \bigcup_{x \neq 0} \mathcal{T}_r(x) \) is an inner point of the central tile.
Periodic points

Definition

For $r \in \mathbb{R}^d$, a point $z \in \mathbb{Z}^d$ is called purely periodic (with respect to τ_r) if $\tau_r^k(z) = z$ for some $k \geq 1$.

Proposition

For each $r \in E_d$, there exist only finitely many purely periodic points. 0 is the only purely periodic point if and only if (\mathbb{Z}^d, τ_r) has the finiteness property.

SRS tiles and the origin

Let $r \in E_d$.

- $0 \in \mathcal{T}_r(x)$ if and only if x is purely periodic.
- (\mathbb{Z}^d, τ_r) has the finiteness property if and only if $0 \in \mathcal{T}_r(0) \setminus \bigcup_{x \neq 0} \mathcal{T}_r(x)$ is an inner point of the central tile.
Idea of proof

Pure periodicity of x implies $0 \in \mathcal{I}_r(x)$.

- $x = \tau_r^{kp}(x)$ by assumption.
- Contractivity of $R(r)$ implies that $0 = \lim_{p \to \infty} R(r)^{kp}x \in \mathcal{I}_r(x)$.

$0 \in \mathcal{I}_r(x)$ implies pure periodicity of x

- By the set equation there is a sequence $(z_n)_{n \geq 1}$ with $z_n = \tau_r^{-n}(x)$ and $0 \in R(r)^n \mathcal{I}_r(z_n)$.
- Thus $0 \in \mathcal{I}_r(z_n)$. Thus by the local finiteness there are n, k such that $z_n = z_{n+k}$.
- Thus $x = \tau_r^k(x)$ by the definition of $(z_n)_{n \geq 1}$.
Idea of proof

Pure periodicity of x implies $0 \in \mathcal{I}_r(x)$.

- $x = \tau_r^{kp}(x)$ by assumption.
- Contractivity of $R(r)$ implies that $0 = \lim_{p \to \infty} R(r)^{kp} x \in \mathcal{I}_r(x)$.

$0 \in \mathcal{I}_r(x)$ implies pure periodicity of x

- By the set equation there is a sequence $(z_n)_{n \geq 1}$ with $z_n = \tau_r^{-n}(x)$ and $0 \in R(r)^n \mathcal{I}_r(z_n)$.
- Thus $0 \in \mathcal{I}_r(z_n)$. Thus by the local finiteness there are n, k such that $z_n = z_{n+k}$.
- Thus $x = \tau_r^k(x)$ by the definition of $(z_n)_{n \geq 1}$.
Note

An SRS tile is not necessarily the closure of its interior!

Example

Set $r = \left(\frac{9}{10}, -\frac{11}{20} \right)$. The points $z_0 = (-1, -1)$, $z_1 = (-1, 1)$, $z_2 = (1, 2)$, $z_3 = (2, 1)$, $z_4 = (1, -1)$ are purely periodic:

$$
\tau_r : \ z_0 \dashrightarrow z_1 \dashrightarrow z_2 \dashrightarrow z_3 \dashrightarrow z_4 \dashrightarrow z_0.
$$

Furthermore, $\tau_r^{-k}(z_0) = \{z_{(k \mod 5)}\}$ and thus

$$
\mathcal{T}_r(z_0) = \mathcal{T}_r(z_1) = \mathcal{T}_r(z_2) = \mathcal{T}_r(z_3) = \mathcal{T}_r(z_4) = \{0\}.
$$

Problem: Find criteria for $\mathcal{T}_r(x) = \text{int}\left(\mathcal{T}_r(x) \right)$.
Note

An SRS tile is not necessarily the closure of its interior!

Example

Set \(r = \left(\frac{9}{10}, -\frac{11}{20} \right) \). The points \(z_0 = (-1, -1), z_1 = (-1, 1), z_2 = (1, 2), z_3 = (2, 1), z_4 = (1, -1) \) are purely periodic:

\[
\tau_r : z_0 \leftrightarrow z_1 \leftrightarrow z_2 \leftrightarrow z_3 \leftrightarrow z_4 \leftrightarrow z_0.
\]

Furthermore, \(\tau_r^{-k}(z_0) = \{ z_{(k \mod 5)} \} \) and thus

\[
\mathcal{I}_r(z_0) = \mathcal{I}_r(z_1) = \mathcal{I}_r(z_2) = \mathcal{I}_r(z_3) = \mathcal{I}_r(z_4) = \{ 0 \}.
\]

Problem: Find criteria for \(\mathcal{I}_r(x) = \overline{\text{int}(\mathcal{I}_r(x))} \).
Tiles associated with an expanding polynomial

Definition (cf. Kátai, Kőrnyei)

Let $A(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$ be an expanding polynomial ($\Rightarrow |a_0| \geq 2$) and B the transposed companion matrix with characteristic polynomial A.

$$F := \left\{ t \in \mathbb{R}^d \left| t = \sum_{i=0}^{\infty} B^{-i}(c_i, 0, \ldots, 0)^T, c_i \in \mathcal{N} \right. \right\}$$

($\mathcal{N} = \{0, \ldots, |a_0| - 1\}$) is called self-affine tile associated with A.

Theorem

- F is compact and self-affine.
- F is the closure of its interior.
- $\{x + F \mid x \in \mathbb{Z}^d\}$ induces a (multiple) tiling of \mathbb{R}^d.
Tiles associated with an expanding polynomial

Definition (cf. Kátai, Kőrnyei)

Let $A(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$ be an expanding polynomial ($\Rightarrow |a_0| \geq 2$) and B the transposed companion matrix with characteristic polynomial A.

$$\mathcal{F} := \left\{ t \in \mathbb{R}^d \middle| t = \sum_{i=0}^{\infty} B^{-i}(c_i, 0, \ldots, 0)^T, c_i \in \mathcal{N} \right\}$$

($\mathcal{N} = \{0, \ldots, |a_0| - 1\}$) is called self-affine tile associated with A.

Theorem

- \mathcal{F} is compact and self-affine.
- \mathcal{F} is the closure of its interior.
- $\{x + \mathcal{F} \mid x \in \mathbb{Z}^d\}$ induces a (multiple) tiling of \mathbb{R}^d.
Tiles associated with an expanding polynomial

Definition (cf. Kátai, Kőrnyei)

Let \(A(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x] \) be an expanding polynomial (\(\Rightarrow |a_0| \geq 2 \)) and \(B \) the transposed companion matrix with characteristic polynomial \(A \).

\[
\mathcal{F} := \left\{ \mathbf{t} \in \mathbb{R}^d \mid \mathbf{t} = \sum_{i=0}^{\infty} B^{-i}(c_i, 0, \ldots, 0)^T, c_i \in \mathcal{N} \right\}
\]

(\(\mathcal{N} = \{0, \ldots, |a_0| - 1\} \)) is called self-affine tile associated with \(A \).

Theorem

- \(\mathcal{F} \) is compact and self-affine.
- \(\mathcal{F} \) is the closure of its interior.
- \(\{\mathbf{x} + \mathcal{F} \mid \mathbf{x} \in \mathbb{Z}^d\} \) induces a (multiple) tiling of \(\mathbb{R}^d \).
Tiles associated with an expanding polynomial

Definition (cf. Kátai, Kőrnyei)

Let \(A(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x] \) be an expanding polynomial (\(\Rightarrow |a_0| \geq 2 \)) and \(B \) the transposed companion matrix with characteristic polynomial \(A \).

\[
\mathcal{F} := \left\{ \mathbf{t} \in \mathbb{R}^d \mid \mathbf{t} = \sum_{i=0}^{\infty} B^{-i}(c_i, 0, \ldots, 0)^T, c_i \in \mathcal{N} \right\}
\]

(\(\mathcal{N} = \{0, \ldots, |a_0| - 1\} \)) is called self-affine tile associated with \(A \).

Theorem

- \(\mathcal{F} \) is compact and self-affine.
- \(\mathcal{F} \) is the closure of its interior.
- \(\{ \mathbf{x} + \mathcal{F} \mid \mathbf{x} \in \mathbb{Z}^d \} \) induces a (multiple) tiling of \(\mathbb{R}^d \).
Note that $\mathcal{F} = \bigcup_{c \in \mathbb{N}} B^{-1}(\mathcal{F} + (c, 0, \ldots, 0)^T)$.

$$r = \left(\frac{1}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0}\right), \quad V = \begin{pmatrix} 1 & a_{d-1} & \cdots & a_1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{d-1} \\ 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Theorem

For all $x \in \mathbb{Z}^d$, we have

$$\mathcal{F} = V \mathcal{I}_r(0),$$

$$x + \mathcal{F} = V \mathcal{I}_r(V^{-1}(x)).$$
Relation to SRS tiles

Note that $\mathcal{F} = \bigcup_{c \in \mathbb{N}} B^{-1}(\mathcal{F} + (c, 0, \ldots, 0)^T)$.

\[r = \left(\frac{1}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right), \quad V = \begin{pmatrix} 1 & a_{d-1} & \cdots & a_1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{d-1} \\ 0 & \cdots & 0 & 1 \end{pmatrix}. \]

Theorem

For all $x \in \mathbb{Z}^d$, we have

\[\mathcal{F} = V \mathcal{I}_r(0), \]
\[x + \mathcal{F} = V \mathcal{I}_r(V^{-1}(x)). \]
Relation to SRS tiles

Note that $\mathcal{F} = \bigcup_{c \in \mathbb{N}} B^{-1}(\mathcal{F} + (c, 0, \ldots, 0)^T)$.

$$r = \left(\frac{1}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0}\right), \quad V = \begin{pmatrix} 1 & a_{d-1} & \cdots & a_1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{d-1} \\ 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Theorem

For all $\mathbf{x} \in \mathbb{Z}^d$, we have

$$\mathcal{F} = V\mathcal{I}_r(\mathbf{0}),$$

$$\mathbf{x} + \mathcal{F} = V\mathcal{I}_r(V^{-1}(\mathbf{x})).$$
SRS tiles associated with expanding polynomials

$X^2 + 2X + 2, \ r = (1/2, 1)$

$2X^2 + 3X + 3, \ r = (2/3, 1)$
(Non-monic) Canonical Number Systems

Definition

Let $A = a_d x^d + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, $Q = \mathbb{Z}[x]/A\mathbb{Z}[x]$, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. If for each $P \in Q$, $P = d_0 + d_1 X + \cdots + d_\ell X^\ell$

then we call (A, \mathcal{N}) a canonical number system (CNS, for short).

This extends number systems with rational bases in the sense of Akiyama, Frougny and Sakarovitch (see later).

Interesting problem: Language of the representations.
(Non-monic) Canonical Number Systems

Definition

Let \(A = a_d x^d + \cdots + a_1 x + a_0 \in \mathbb{Z}[x], \ a_0 \geq 2, \ a_d \neq 0, \)
\(Q = \mathbb{Z}[x]/A\mathbb{Z}[x], \) and \(\mathcal{N} = \{0, \ldots, a_0 - 1\}. \) If for each \(P \in Q, \)
\[
P = d_0 + d_1 X + \ldots + d_\ell X^\ell
\]
then we call \((A, \mathcal{N})\) a *canonical number system* (CNS, for short).

This extends number systems with rational bases in the sense of Akiyama, Frougny and Sakarovitch (see later).

Interesting problem: *Language of the representations.*
(Non-monic) Canonical Number Systems

Definition

Let $A = a_dx^d + \cdots + a_1x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, $Q = \mathbb{Z}[x]/A\mathbb{Z}[x]$, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. If for each $P \in Q$,

$$P = d_0 + d_1X + \ldots + d_\ell X^\ell$$

then we call (A, \mathcal{N}) a canonical number system (CNS, for short).

This extends number systems with rational bases in the sense of Akiyama, Frougny and Sakarovitch (see later).

Interesting problem: Language of the representations.
The theorem given in the first lecture extends in a natural way to non-monic CNS.

Theorem

Let $A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. Then the following assertions hold.

- If A is expanding then τ_r with $r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right)$ has only ultimately periodic orbits.
- The pair (A, \mathcal{N}) is a CNS if and only if $r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right)$ has the finiteness property.
The theorem given in the first lecture extends in a natural way to non-monic CNS.

Theorem

Let \(A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x], a_0 \geq 2, a_d \neq 0, \) and \(\mathcal{N} = \{0, \ldots, a_0 - 1\} \). Then the following assertions hold.

- If \(A \) is expanding then \(\tau_r \) with \(r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right) \) has only ultimately periodic orbits.
- The pair \((A, \mathcal{N})\) is a CNS if and only if \(r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right) \) has the finiteness property.
The theorem given in the first lecture extends in a natural way to non-monic CNS.

Theorem

Let $A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. Then the following assertions hold.

- If A is expanding then τ_r with $r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right)$ has only ultimately periodic orbits.
- The pair (A, \mathcal{N}) is a CNS if and only if $r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right)$ has the finiteness property.
Brunotte Basis and Brunotte Module

Definition

The **Brunotte basis modulo** A is defined by $\{W_0, \ldots, W_{d-1}\}$ with

$$W_0 = a_d \quad \text{and} \quad W_k = \lambda W_{k-1} + a_{d-k} \quad \text{for} \quad 1 \leq k \leq d - 1.$$

The **Brunotte module** Λ_A is the \mathbb{Z}-submodule of \mathbb{Q} generated by the Brunotte basis. The representation mapping with respect to the Brunotte basis is denoted by

$$\Psi_A : \Lambda_A \to \mathbb{Z}^d, \quad P = \sum_{k=0}^{d-1} z_k W_k \mapsto (z_0, \ldots, z_{d-1})^t.$$
Tiles associated with expanding polynomials

Generalizing the construction of Kátai and Környei we can attach a family \(\{ G_A \mid A \in \mathbb{Q} \} \) of tiles.

These tiles are no longer self similar! Indeed, we have to keep track of the complicated language of representations.

Theorem

Let \(A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x], \ a_0 \geq 2, \ a_d \neq 0, \) be an expanding polynomial, and \(r = (\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0}) \). Then

\[
G_A(\psi_A^{-1}(z)) = V T_r(z) \quad \text{for all} \ z \in \mathbb{Z}^d.
\]
Tiles associated with expanding polynomials

Generalizing the construction of Kátai and Környei we can attach a family \(\{ G_A \mid A \in \mathbb{Q} \} \) of tiles.

These tiles are no longer self similar! Indeed, we have to keep track of the complicated language of representations.

Theorem

Let \(A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x] \), \(a_0 \geq 2 \), \(a_d \neq 0 \), be an expanding polynomial, and \(r = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0} \right) \).

Then

\[
G_A\left(\psi_A^{-1}(z) \right) = V T_r(z) \quad \text{for all } z \in \mathbb{Z}^d.
\]
Generalizing the construction of Kátai and Környei we can attach a family \(\{ G_A \mid A \in \mathbb{Q} \} \) of tiles. These tiles are no longer self similar! Indeed, we have to keep track of the complicated language of representations.

Theorem

Let \(A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x] \), \(a_0 \geq 2 \), \(a_d \neq 0 \), be an expanding polynomial, and \(\mathbf{r} = (\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \ldots, \frac{a_1}{a_0}) \). Then

\[
G_A(\psi_A^{-1}(\mathbf{z})) = V^T \mathbf{r} \mathbf{z} \quad \text{for all} \quad \mathbf{z} \in \mathbb{Z}^d.
\]
Theorem

Let $A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, be an expanding polynomial, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. Then the following assertions hold.

- The collection $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak m-tiling of \mathbb{R}^d for some $m \geq 1$.
- If (A, \mathcal{N}) is a CNS, then $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak tiling of \mathbb{R}^d.
Theorem

Let $A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, be an expanding polynomial, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. Then the following assertions hold.

- The collection $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak m-tiling of \mathbb{R}^d for some $m \geq 1$.

- If (A, \mathcal{N}) is a CNS, then $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak tiling of \mathbb{R}^d.

Tilings
Let $A = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, $a_0 \geq 2$, $a_d \neq 0$, be an expanding polynomial, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. Then the following assertions hold.

- The collection $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak m-tiling of \mathbb{R}^d for some $m \geq 1$.
- If (A, \mathcal{N}) is a CNS, then $\{G_A(P) \mid P \in \Lambda_A\}$ forms a weak tiling of \mathbb{R}^d.

Theorem
Rational bases (Akiyama, Frougny, and Sakarovitch)

- Fix \(p, q \in \mathbb{N} \) with \(p > q \geq 1 \).
- For \(N \in \mathbb{N} \) define the sequence \((N_i)_{i \geq 0}\) by
 \[
 N_0 := N, \quad qN_i = pN_{i+1} + a_i
 \]
 with \(a_i \in A := \{0, \ldots, p-1\} \).
- Each \(N \) admits a representation of the form
 \[
 N = \sum_{i=0}^{k} \frac{a_i}{q} \left(\frac{p}{q} \right)^i,
 \]
 the \(\frac{p}{q} \)-expansion on \(N \). It is unique.
Rational bases (Akiyama, Frougny, and Sakarovitch)

- Fix $p, q \in \mathbb{N}$ with $p > q \geq 1$.
- For $N \in \mathbb{N}$ define the sequence $(N_i)_{i \geq 0}$ by
 \[N_0 := N, \quad qN_i = pN_{i+1} + a_i \]
 with $a_i \in A := \{0, \ldots, p - 1\}$.
- Each N admits a representation of the form
 \[N = \sum_{i=0}^{k} \frac{a_i}{q} \left(\frac{p}{q}\right)^i, \]
 the $\frac{p}{q}$-expansion on N. It is unique.
Rational bases (Akiyama, Frougny, and Sakarovitch)

- Fix $p, q \in \mathbb{N}$ with $p > q \geq 1$.
- For $N \in \mathbb{N}$ define the sequence $(N_i)_{i \geq 0}$ by
 \[
 N_0 := N, \quad qN_i = pN_{i+1} + a_i
 \]
 with $a_i \in A := \{0, \ldots, p - 1\}$.
- Each N admits a representation of the form
 \[
 N = \sum_{i=0}^{k} \frac{a_i}{q} \left(\frac{p}{q} \right)^i,
 \]
 the $\frac{p}{q}$-expansion on N. It is unique.
Some Examples of $\frac{3}{2}$-expansions

<table>
<thead>
<tr>
<th>$\frac{p}{q}$ – expansion</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
</tr>
<tr>
<td>212</td>
<td>4</td>
</tr>
<tr>
<td>2101</td>
<td>5</td>
</tr>
<tr>
<td>2120</td>
<td>6</td>
</tr>
<tr>
<td>2122</td>
<td>7</td>
</tr>
<tr>
<td>21011</td>
<td>8</td>
</tr>
<tr>
<td>21200</td>
<td>9</td>
</tr>
<tr>
<td>21202</td>
<td>10</td>
</tr>
</tbody>
</table>
The language of representations

- $L_{p/q}$ is the language of representations of integers.
- $L_{p/q}$ is not the full shift.
- $L_{p/q}$ is not regular, i.e., it is not accepted by a finite automaton.
- $L_{p/q}$ is prefix closed but not suffix closed.
The language of representations

- $L_{p/q}$ is the language of representations of integers.
- $L_{p/q}$ is not the full shift.
- $L_{p/q}$ is not regular, i.e., it is not accepted by a finite automaton.
- $L_{p/q}$ is prefix closed but not suffix closed.
$L_{p/q}$ is the language of representations of integers.

$L_{p/q}$ is not the full shift.

$L_{p/q}$ is not regular, i.e., it is not accepted by a finite automaton.

$L_{p/q}$ is prefix closed but not suffix closed.
The language of representations

- $L_{p/q}$ is the language of representations of integers.
- $L_{p/q}$ is not the full shift.
- $L_{p/q}$ is not regular, i.e., it is not accepted by a finite automaton.
- $L_{p/q}$ is prefix closed but not suffix closed.
Addition of 1 is easy

Figure: The addition of one in the $\frac{3}{2}$ number system
The representation tree
Expansions of reals I

Let \(w(n) \) and \(W(n) \) be the lexicographically smallest and largest word starting at \(n \), respectively.

Let \(T_{p/q} \) be the set of infinite label strings in the representation tree.

For each \(w = (w_1 w_2 \ldots) \in T_{p/q} \) set

\[
x = \pi(w) = \sum_{i \geq 1} \frac{w_i}{q} \left(\frac{q}{p} \right).
\]

This is the \(\frac{p}{q} \)-expansion of \(x \).

\(\pi \) is order preserving.
Expansions of reals I

- Let $w(n)$ and $W(n)$ be the lexicographically smallest and largest word starting at n, respectively.
- Let $T_{p/q}$ be the set of infinite label strings in the representation tree.
- For each $w = (w_1 w_2 \ldots) \in T_{p/q}$ set
 \[x = \pi(w) = \sum_{i \geq 1} \frac{w_i}{q} \left(\frac{q}{p} \right). \]
 This is the $\frac{p}{q}$-expansion of x.
- π is order preserving.
Expansions of reals I

Let \(w(n) \) and \(W(n) \) be the lexicographically smallest and largest word starting at \(n \), respectively.

Let \(T_{p/q} \) be the set of infinite label strings in the representation tree.

For each \(w = (w_1 w_2 \ldots) \in T_{p/q} \) set

\[
x = \pi(w) = \sum_{i \geq 1} \frac{w_i}{q} \left(\frac{q}{p} \right).
\]

This is the \(\frac{p}{q} \)-expansion of \(x \).

\(\pi \) is order preserving.
Let $w(n)$ and $W(n)$ be the lexicographically smallest and largest word starting at n, respectively.

Let $T_{p/q}$ be the set of infinite label strings in the representation tree.

For each $w = (w_1 w_2 \ldots) \in T_{p/q}$ set

$$x = \pi(w) = \sum_{i \geq 1} \frac{w_i}{q} \left(\frac{q}{p} \right).$$

This is the $\frac{p}{q}$-expansion of x.

π is order preserving.
Expansions of reals II

- Let $\omega_{p/q} := \pi(W(0))$
- Each $x \in [0, \omega_{p/q}]$ has a $\frac{p}{q}$-expansion.
- The $\frac{p}{q}$-expansion is unique apart from countably many exceptions.
Expansions of reals II

Let \(\omega_{p/q} := \pi(W(0)) \)

Each \(x \in [0, \omega_{p/q}] \) has a \(\frac{p}{q} \)-expansion.

The \(\frac{p}{q} \)-expansion is unique apart from countably many exceptions.
Expansions of reals II

- Let $\omega_{p/q} := \pi(W(0))$
- Each $x \in [0, \omega_{p/q}]$ has a $\frac{p}{q}$-expansion.
- The $\frac{p}{q}$-expansion is unique apart from countably many exceptions.
Application of $\frac{p}{q}$-expansions: Mahler's Problem

- Original Problem: Distribution of $\left(\frac{3}{2}\right)^n \pmod{1}$.
- Generalization: $I \subset [0, 1]$,

$$Z_{\frac{p}{q}}(I) = \left\{ z \in \mathbb{R} : \left\{ z \left(\frac{p}{q}\right)^n \right\} \text{ stays eventually in } I \right\}$$

Problem: Find large I with $Z_{\frac{p}{q}}(I) = \emptyset$ and small I with $Z_{\frac{p}{q}}(I) \neq \emptyset$.

(Akiyama et al., 2008) If $p \geq 2q + 1$ there exists $Y_{\frac{p}{q}}$ of Lebesgue measure $\frac{p}{q}$ such that $Z_{\frac{p}{q}}(Y_{\frac{p}{q}})$ is countably infinite.
Application of $\frac{p}{q}$-expansions: Mahler’s Problem

- Original Problem: Distribution of $\left(\frac{3}{2}\right)^n \pmod{1}$.
- Generalization: $I \subset [0, 1]$

$$Z_{p/q}(I) = \left\{ z \in \mathbb{R} : \left\{ z \left(\frac{p}{q} \right)^n \right\} \text{ stays eventually in } I \right\}$$

Problem: Find large I with $Z_{p/q}(I) = \emptyset$ and small I with $Z_{p/q}(I) \neq \emptyset$.

(Akiyama et al., 2008) If $p \geq 2q + 1$ there exists $Y_{p/q}$ of Lebesgue measure $\frac{p}{q}$ such that $Z_{p/q}(Y_{p/q})$ is countably infinite.
Application of $\frac{p}{q}$-expansions: Mahler’s Problem

- Original Problem: Distribution of $(\frac{3}{2})^n \pmod{1}$.
- Generalization: $I \subset [0, 1]$

$$Z_{p/q}(I) = \left\{ z \in \mathbb{R} : \left\{ z \left(\frac{p}{q} \right)^n \right\} \text{ stays eventually in } I \right\}$$

Problem: Find large I with $Z_{p/q}(I) = \emptyset$ and small I with $Z_{p/q}(I) \neq \emptyset$.

(Akiyama et al., 2008) If $p \geq 2q + 1$ there exists $Y_{p/q}$ of Lebesgue measure $\frac{p}{q}$ such that $Z_{p/q}(Y_{p/q})$ is countably infinite.
Relation to SRS

- The dynamical system generating the $\frac{p}{q}$-expansions is (conjugate to) $\tau_{-q/p}$.

- The tiling $\{T_{-q/p}(N) \mid N \in \mathbb{Z}\}$ consists of (possibly degenerate) intervals with infinitely many different lengths.

- The length of the interval $T_{-q/p}(0)$ is related to the asymptotic solution of the Josephus problem (see Odlyzko and Wilf (1991)).
Relation to SRS

- The dynamical system generating the $\frac{p}{q}$-expansions is (conjugate to) $\tau_{-q/p}$.

- The tiling $\{T_{-q/p}(N) \mid N \in \mathbb{Z}\}$ consists of (possibly degenerate) intervals with infinitely many different lengths.

- The length of the interval $T_{-q/p}(0)$ is related to the asymptotic solution of the Josephus problem (see Odlyzko and Wilf (1991)).
The dynamical system generating the $\frac{p}{q}$-expansions is (conjugate to) $\tau_{-\frac{q}{p}}$.

The tiling $\{T_{-\frac{q}{p}}(N) \mid N \in \mathbb{Z}\}$ consists of (possibly degenerate) intervals with infinitely many different lengths.

The length of the interval $T_{-\frac{q}{p}}(0)$ is related to the asymptotic solution of the Josephus problem (see Odlyzko and Wilf (1991)).
Tiles associated with a Pisot number

A Pisot number is an algebraic integer $\beta > 1$ with $|\beta_j| < 1$ for every conjugate β_j of β. Write the minimal polynomial of β as

$$(X - \beta)(X^d + r_{d-1}X^{d-1} + \cdots + r_0X^0) \in \mathbb{Z}[X].$$

Let $r = (r_0, \ldots, r_{d-1})$. For every $x \in \mathbb{Z}^d$, the SRS tile associated with β is the set $\mathcal{T}_r(x) = \lim_{n \to \infty} R(r)^n \tau_r^{-n}(x)$,

$$R(r) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -r_0 & -r_1 & \cdots & -r_{d-2} & -r_{d-1} \end{pmatrix}, \quad \tau_r(z) = R(r)z + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \{rz\} \end{pmatrix}. $$
Relation to β-expansions and the β-transformation

The β-expansion of $z \in [0, 1)$ is given by the β-transformation

$$T_\beta : [0, 1) \to [0, 1), \ z \mapsto \{\beta z\} = \beta z - \lfloor \beta z \rfloor,$$

$$z = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{T_\beta(z)}{\beta} = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{\lfloor \beta T_\beta(z) \rfloor}{\beta^2} + \frac{T_\beta^2(z)}{\beta^2} = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

with $b_n = \lfloor \beta T_\beta^{n-1}(z) \rfloor$.

Lemma

We have $\{r_\tau^n(z)\} = T_\beta^n(\{rz\})$ for all $n \geq 0$.

The map $f : \mathbb{Z}^d \to \mathbb{Z}[\beta] \cap [0, 1), \ z \mapsto \{rz\}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0, 1)$ is conjugate to τ_r.

(\mathbb{Z}^d, τ_r) has the finiteness property if and only if β has the property (F): every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ has finite β-expansion.
Relation to β-expansions and the β-transformation

The β-expansion of $z \in [0, 1)$ is given by the β-transformation

\[T_\beta : [0, 1) \to [0, 1), \ z \mapsto \{ \beta z \} = \beta z - \lfloor \beta z \rfloor, \]

\[z = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{T_\beta(z)}{\beta} = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{\lfloor \beta T_\beta(z) \rfloor}{\beta^2} + \frac{T_\beta^2(z)}{\beta^2} = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n} \]

with $b_n = \lfloor \beta T_\beta^{n-1}(z) \rfloor$.

Lemma

We have $\{ r_\tau^n(z) \} = T_\beta^n(\{ rz \})$ for all $n \geq 0$.

The map $f : \mathbb{Z}^d \to \mathbb{Z}[\beta] \cap [0, 1), \ z \mapsto \{ rz \}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0, 1)$ is conjugate to τ_r.

(\mathbb{Z}^d, τ_r) has the finiteness property if and only if β has the property (F): every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ has finite β-expansion.
Relation to β-expansions and the β-transformation

The β-expansion of $z \in [0, 1)$ is given by the β-transformation

$$T_\beta : [0, 1) \rightarrow [0, 1), \ z \mapsto \{\beta z\} = \beta z - \lfloor \beta z \rfloor,$$

$$z = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{T_\beta(z)}{\beta} = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{\lfloor \beta T_\beta(z) \rfloor}{\beta^2} + \frac{T_\beta^2(z)}{\beta^2} = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

with $b_n = \lfloor \beta T_\beta^{n-1}(z) \rfloor$.

Lemma

We have $\{r\tau_r^n(z)\} = T_\beta^n(\{rz\})$ for all $n \geq 0$.

The map $f : \mathbb{Z}^d \rightarrow \mathbb{Z}[\beta] \cap [0, 1), \ z \mapsto \{rz\}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0, 1)$ is conjugate to τ_r.

(\mathbb{Z}^d, τ_r) has the finiteness property if and only if β has the property (F): every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ has finite β-expansion.
Relation to β-expansions and the β-transformation

The β-expansion of $z \in [0, 1)$ is given by the β-transformation

$$T_\beta : [0, 1) \rightarrow [0, 1), \ z \mapsto \{\beta z\} = \beta z - \lfloor \beta z \rfloor,$$

$$z = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{T_\beta(z)}{\beta} = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{\lfloor \beta T_\beta(z) \rfloor}{\beta^2} + \frac{T_\beta^2(z)}{\beta^2} = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

with $b_n = \lfloor \beta T_\beta^{n-1}(z) \rfloor$.

Lemma

We have $\{r^\tau r^n(z)\} = T_\beta^n(\{rz\})$ for all $n \geq 0$.

The map $f : \mathbb{Z}^d \rightarrow \mathbb{Z}[\beta] \cap [0, 1), \ z \mapsto \{rz\}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0, 1)$ is conjugate to τ_r.

(\mathbb{Z}^d, τ_r) has the finiteness property if and only if β has the property (F): every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ has finite β-expansion.
Relation to β-expansions and the β-transformation

The β-expansion of $z \in [0, 1)$ is given by the β-transformation

$$T_\beta : [0, 1) \to [0, 1), \ z \mapsto \{\beta z\} = \beta z - \lfloor \beta z \rfloor,$$

$$z = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{T_\beta(z)}{\beta} = \frac{\lfloor \beta z \rfloor}{\beta} + \frac{\lfloor \beta T_\beta(z) \rfloor}{\beta^2} + \frac{T_\beta^2(z)}{\beta^2} = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

with $b_n = \lfloor \beta T_\beta^{n-1}(z) \rfloor$.

Lemma

We have $\{r \tau_r^n(z)\} = T_\beta^n(\{rz\})$ for all $n \geq 0$.

The map $f : \mathbb{Z}^d \to \mathbb{Z}[\beta] \cap [0, 1), \ z \mapsto \{rz\}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0, 1)$ is conjugate to τ_r.

(\mathbb{Z}^d, τ_r) has the finiteness property if and only if β has the property (F): every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ has finite β-expansion.
(Integral) β-tiles

Let β_1, \ldots, β_d be the Galois conjugates of $\beta, \beta_1, \ldots, \beta_r \in \mathbb{R}$, $\beta_{r+1} = \beta_{r+s+1}, \ldots, \beta_{r+s} = \beta_{r+2s} \in \mathbb{C}$, $d = r + 2s$, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta), 1 \leq j \leq d$,

$$\Phi_\beta : \mathbb{Q}(\beta) \to \mathbb{R}^d, \ x \mapsto \left(x^{(1)}, \ldots, x^{(r)}, \Re(x^{(r+1)}), \Im(x^{(r+1)}), \ldots, \Re(x^{(r+s)}), \Im(x^{(r+s)}) \right).$$

Definition (cf. Thurston (1989), Akiyama (1999))

For $x \in \mathbb{Z}[\beta] \cap [0, 1)$, the β-tile is the (compact) set

$$\mathcal{R}_\beta(x) = \lim_{n \to \infty} \Phi_\beta(\beta^n T_\beta^{-n}(x)).$$

We have $t \in \mathcal{R}_\beta(x)$ if and only if there exist $c_k \in \mathbb{Z}$ with

$$t = \Phi_\beta(x) + \sum_{k=1}^{\infty} \Phi_\beta(\beta^{k-1} c_k), \quad \frac{c_n}{\beta} + \cdots + \frac{c_1}{\beta^n} + \frac{x}{\beta^n} \in [0, 1) \ \forall n \geq 1.$$
(Integral) β-tiles

Let β_1, \ldots, β_d be the Galois conjugates of β, $\beta_1, \ldots, \beta_r \in \mathbb{R}$, $\beta_{r+1} = \beta_{r+s+1}, \ldots, \beta_{r+s} = \beta_{r+2s} \in \mathbb{C}$, $d = r + 2s$, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta)$, $1 \leq j \leq d$,

$$
\Phi_\beta : \mathbb{Q}(\beta) \to \mathbb{R}^d, \quad x \mapsto (x^{(1)}, \ldots, x^{(r)}, \Re(x^{(r+1)}), \Im(x^{(r+1)}), \ldots, \Re(x^{(r+s)}), \Im(x^{(r+s)})).
$$

Definition

For $x \in \mathbb{Z}[\beta] \cap [0, 1)$, the integral β-tile is the (compact) set

$$
S_\beta(x) = \lim_{n \to \infty} \Phi_\beta(\beta^n(T_\beta^{-n}(x) \cap \mathbb{Z}[\beta])).
$$

We have $t \in S_\beta(x)$ if and only if there exist $c_k \in \mathbb{Z}$ with

$$
t = \Phi_\beta(x) + \sum_{k=1}^\infty \Phi_\beta(\beta^{k-1}c_k), \quad \frac{c_n}{\beta} + \cdots + \frac{c_1}{\beta^n} + \frac{x}{\beta^n} \in [0, 1) \cap \mathbb{Z}[\beta] \ \forall n.
$$
Relation between SRS tiles and integral β-tiles

Theorem

Let $x^d + r_{d-1}x^{d-1} + \cdots + r_0 = (X - \beta_j)(X^{d-1} + q_{d-2}^{(j)}X^{d-2} + \cdots + q_0^{(j)}), \ 1 \leq j \leq d,$

$$U = \begin{pmatrix} q_0^{(1)} & q_1^{(j)} & \cdots & q_{d-2}^{(1)} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ q_0^{(r)} & q_1^{(j)} & \cdots & q_{d-2}^{(r)} & 1 \\ \Re(q_0^{(r+1)}) & \Re(q_1^{(r+1)}) & \cdots & \Re(q_{d-2}^{(r+1)}) & 1 \\ \Im(q_0^{(r+1)}) & \Im(q_1^{(r+1)}) & \cdots & \Im(q_{d-2}^{(r+1)}) & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \Re(q_0^{(r+s)}) & \Re(q_1^{(r+s)}) & \cdots & \Re(q_{d-2}^{(r+s)}) & 1 \\ \Im(q_0^{(r+s)}) & \Im(q_1^{(r+s)}) & \cdots & \Im(q_{d-2}^{(r+s)}) & 0 \end{pmatrix} \in \mathbb{R}^{d \times d},$$

I_d be the identity matrix. For every $x \in \mathbb{Z}^d$, we have

$$S_\beta(\{rx\}) = U(T(r) - \beta I_d)T_r(x).$$
SRS tiles associated with Pisot numbers

\[\beta^3 = \beta^2 + \beta + 1, \quad r = \left(\frac{1}{\beta}, \beta - 1 \right) \]

\[\beta^3 = 2\beta^2 + 2\beta + 2, \quad r = \left(\frac{2}{\beta}, \beta - 2 \right) \]

The integral \(\beta \)-tiles are given by

\[S_\beta(\{rx\}) = U(R(r) - \beta I_d)T(x), \]

but the “centers” of the integral \(\beta \)-tiles are given by

\[\Phi_\beta(\{rx\}) = U(\tau_r(x) - \beta x) = U(R(r) - \beta I_d)x + U(0, \ldots, 0, \{rx\})^t. \]
Properties of β-tiles

If β is a Pisot unit ($\beta^{-1} \in \mathbb{Z}[\beta]$), then

- $\mathcal{R}_\beta(x) = S_\beta(x)$ for every $x \in \mathbb{Z}[\beta] \cap [0, 1)$,
- we have only finitely many tiles up to translation,
- the boundary of each tile has zero Lebesgue measure,
- each tile is the closure of its interior,
- $\{S_\beta(x) \mid x \in \mathbb{Z}[\beta] \cap [0, 1]\}$ forms a multiple tiling of \mathbb{R}^d,
- $\{S_\beta(x) \mid x \in \mathbb{Z}[\beta] \cap [0, 1]\}$ forms a tiling if (F) holds,
- $\{S_\beta(x) \mid x \in \mathbb{Z}[\beta] \cap [0, 1]\}$ forms a tiling iff (W) holds: for every $x \in \mathbb{Z}[\beta] \cap [0, 1)$ and every $\varepsilon > 0$, there exists some $y \in [0, \varepsilon)$ with finite β-expansion such that $x + y$ has finite β-expansion,

Tiling properties

Definition

Let \(r = (r_0, \ldots, r_{d-1}) \in \mathbb{R}^d \) be such that \(R(r) \) is contracting. The family \(\{ T_r(x) \mid x \in \mathbb{Z}^d \} \) forms a weak \(m \)-tiling of \(\mathbb{R}^d \) if every point of \(\mathbb{R}^d \) is contained in at least \(m \) different tiles \(T_r(x) \) and no point is in the interior of \(m + 1 \) different tiles \(T_r(x) \).

Theorem

The family \(\{ T_r(x) \mid x \in \mathbb{Z}^d \} \) forms a weak \(m \)-tiling of \(\mathbb{R}^d \) for some \(m \geq 1 \) if one of the following conditions hold.

- \(r \in \mathbb{Q}^d \),
- \((X - \beta)(X^d + r_{d-1}X^{d-1} + \cdots + r_0) \in \mathbb{Z}[X] \) for some \(\beta > 1 \),
- \(r_0, \ldots, r_{d-1} \) are algebraically independent over \(\mathbb{Q} \).

If \((\mathbb{Z}^d, \tau_r) \) satisfies the finiteness property, then \(m = 1 \).
(m-)exclusive points

Definition

\(t \in \mathbb{R}^d \) is an **exclusive point** if
\[
\# \{ x \in \mathbb{Z}^d \mid t \in \mathcal{T}_r(x) \} = 1.
\]

Lemma

Let \(R = \sum_{k=1}^{\infty} \| R(r)^k (0, \ldots, 0, 1)^t \| \). If, for some \(z \in \mathbb{Z}^d, n \geq 0, \)
\[
\# \{ \tau_r^n (z + y) \mid y \in \mathbb{Z}^d, \| y \| \leq R \} = 1,
\]
then \(R(r)^n z \) is an exclusive point.

Lemma

If \(r \) satisfies one of the conditions of the theorem and there exists an exclusive point, then \(\{ \mathcal{T}_r(x) \mid x \in \mathbb{Z}^d \} \) forms a weak \((1-)\)tiling.
(m-)exclusive points

Definition

\(t \in \mathbb{R}^d \) is an **\(m \)-exclusive point** if \(\#\{ x \in \mathbb{Z}^d \mid t \in T_r(x) \} = m \).

Lemma

Let \(R = \sum_{k=1}^{\infty} \| R(r)^k (0, \ldots, 0, 1)^t \| \). If, for some \(z \in \mathbb{Z}^d, n \geq 0 \),

\[
\#\{ \tau_r^n(z + y) \mid y \in \mathbb{Z}^d, \| y \| \leq R \} = m,
\]

then \(R(r)^n z \) is an **\(m' \)-exclusive point** with \(1 \leq m' \leq m \).

Lemma

If \(r \) satisfies one of the conditions of the theorem and there exists an \(m \)-exclusive point, then \(\{ T_r(x) \mid x \in \mathbb{Z}^d \} \) forms a **weak \(m' \)-tiling** with \(1 \leq m' \leq m \).
Definition

For \(r = (r_0, \ldots, r_{d-1}) \in \mathbb{R}^d \), the \(\alpha \)-SRS \((\mathbb{Z}^d, \tau_{r,\alpha}) \) is defined by

\[
\tau_{r,\alpha} : \mathbb{Z}^d \to \mathbb{Z}^d, \quad x = (x_0, \ldots, x_{d-1}) \mapsto (x_1, \ldots, x_{d-1}, -\lfloor rx + \alpha \rfloor).
\]

For every \(x \in \mathbb{Z}^d \), the \(\alpha \)-SRS tile is defined by

\[
T_{r,\alpha}(x) = \lim_{n \to \infty} R(r)^n \tau_{r,\alpha}^{-n}(x).
\]

An \(1/2 \)-SRS is also called symmetric SRS.

Theorem (Kalle and Steiner (2011))

Let \(\beta \) be the smallest Pisot number \((\beta^3 = \beta + 1) \), \(r = (1/\beta, \beta) \), or the Tribonacci number \((\beta^3 = \beta^2 + \beta + 1) \), \(r = (1/\beta, \beta - 1) \), then \(\{ T_{r,1/2}(x) \mid x \in \mathbb{Z}^2 \} \) forms a 2-tiling of \(\mathbb{R}^2 \).
Double tiling for a symmetric SRS

\[\beta^3 = \beta^2 + \beta + 1, \quad r = \left(\frac{1}{\beta}, \beta - 1\right), \quad \alpha = 1/2 \]
Tiling for a symmetric SRS

$$\beta^3 = 2\beta^2 - \beta + 1, \ r = (1/\beta, \beta - 2), \ \alpha = 1/2$$