Multi-dimensional sets recognizable in all abstract numeration systems

Émilie Charlier, Anne Lacroix, Narad Rampersad

University of Liège

June 10th 2011
Plan

- Base k numeration
- Multi-dimensional k-recognizable sets
- Abstract numeration systems
- Multi-dimensional S-recognizable sets
Plan

- Base k numeration
- Multi-dimensional k-recognizable sets
- Abstract numeration systems
- Multi-dimensional S-recognizable sets
Base k numeration

Let $k \geq 2$ be an integer.
$\Sigma_k = \{0, \ldots, k - 1\}$

$$n = \sum_{i=0}^{m} w_i k^i, \ w_m \neq 0$$

$rep_k(n) = w_m w_{m-1} \cdots w_0 \in \Sigma_k^*$

A set $X \subseteq \mathbb{N}$ is k-recognizable if the language $rep_k(X)$ is accepted by a finite automaton.
Base k numeration

Proposition
If $X \subseteq \mathbb{N}$ is an ultimately periodic set, then X is k-recognizable for all $k \geq 2$.

Theorem (Cobham, 1969)
Let $k, m \geq 2$ be two multiplicatively independent integers. A set $X \subseteq \mathbb{N}$ is both k-recognizable and m-recognizable if and only if X is ultimately periodic.

Two integers k and m are *multiplicatively independent* if

$$k^r = m^s \Rightarrow r = s = 0$$
Corollary

A set $X \subseteq \mathbb{N}$ is k-recognizable for all $k \geq 2$ if and only if X is ultimately periodic.
Corollary

A set $X \subseteq \mathbb{N}$ is k-recognizable for all $k \geq 2$ if and only if X is ultimately periodic.

or equivalently

Corollary

A set $X \subseteq \mathbb{N}$ is k-recognizable for all $k \geq 2$ if and only if X is 1-recognizable.

A set $X \subseteq \mathbb{N}$ is 1-recognizable if the language $\{a^n : n \in X\}$ of unary representations of X is accepted by a finite automaton.
Plan

- Base k numeration
- **Multi-dimensional** k-recognizable sets
- Abstract numeration systems
- Multi-dimensional S-recognizable sets
Multi-dimensional k-recognizable sets

Padding function

Let w_1, \ldots, w_d be words over Σ, we define

$$(\cdot)^\# : (\Sigma^*)^d \rightarrow ((\Sigma \cup \{\#\})^d)^*$$

by

$$(w_1, \ldots, w_d)^\# = (w_1^\#^{m-|w_1|}, \ldots, w_d^\#^{m-|w_d|})$$

where $m = \max\{|w_1|, \ldots, |w_d|\}$

Example

$$(ab, a, cdb)^\# = (ab^\#, a^\#^\#, cdb) = (a, a, c)(b, \#, d)(\#, \#, b)$$
Multi-dimensional k-recognizable sets

Let $R \subseteq (\Sigma^*)^d$

$$R^\# = \{(w_1, \cdots, w_d)^\# \mid (w_1, \cdots, w_d) \in R\}$$

Let $k \geq 2$ be an integer and $X \subseteq \mathbb{N}^d$.

$$rep_k(X) = \{(rep_k(n_1), \ldots, rep_k(n_d)) \mid (n_1, \ldots, n_d) \in X\}$$

A set $X \subseteq \mathbb{N}^d$ is k-recognizable if the language $rep_k(X)^\#$ over $(\Sigma_k \cup \{\#\})^d$ is accepted by a finite automaton.
Multi-dimensional k-recognizable sets

Theorem (Cobham-Semenov, Semenov 1977)
Let k, m be two multiplicatively independent integers. A subset X of \mathbb{N}^d is both k-recognizable and m-recognizable if and only if X is semi-linear.

A set $X \subseteq \mathbb{N}^d$ is linear if there exist $v_0, v_1, \ldots, v_t \in \mathbb{N}^d$ such that

$$X = v_0 + \mathbb{N}v_1 + \mathbb{N}v_2 + \cdots + \mathbb{N}v_t.$$

A set $X \subseteq \mathbb{N}^d$ is semi-linear if it is a finite union of linear sets.
Multi-dimensional k-recognizable sets

Example

Figure: The set $X = \{(n, 2m) : n, m \in \mathbb{N}\} = \mathbb{N}(1, 0) + \mathbb{N}(0, 2)$
Multi-dimensional \(k \)-recognizable sets

Corollary

A set \(X \subseteq \mathbb{N}^d \) is \(k \)-recognizable for all \(k \geq 2 \) if and only if \(X \) is semi-linear.
Multi-dimensional k-recognizable sets

In the one dimensional case, we have the following equivalences

X is ultimately periodic $\iff X$ is semi-linear $\iff X$ is 1-recognizable

\Rightarrow The semi-linear sets are a good extension of ultimately periodic sets for the integer base numeration systems
Multi-dimensional k-recognizable sets

QUESTION : Is it also the case for the abstract numeration systems ?
Plan

- Base k numeration
- Multi-dimensional k-recognizable sets
- Abstract numeration systems
- Multi-dimensional S-recognizable sets
Abstract numeration systems

An *abstract numeration system* is a triple $S = (L, \Sigma, <)$ where L is an infinite regular language over the totally ordered alphabet $(\Sigma, <)$

By enumerating words of L in the radix order (induced by $<$), we define a one-to-one correspondence between \mathbb{N} and L

$$\text{rep}_S : \mathbb{N} \rightarrow L : n \mapsto (n + 1)\text{th \ word \ of} \ L$$

$$\text{val}_S = \text{rep}_S^{-1} : L \rightarrow \mathbb{N}$$
Abstract numeration systems

Example

\[S = (a^* b^*, \{a, b\}, a < b) \]

\[L = a^* b^* \]

\(\varepsilon \)	0
\(a \)	1
\(b \)	2
\(aa \)	3
\(ab \)	4
\(bb \)	5
\(aaa \)	6
\(aab \)	7
\(abb \)	8
\vdots	\vdots

A set \(X \subseteq \mathbb{N} \) is \(S \)-recognizable if the language \(rep_S(X) \) is accepted by a finite automaton.
Abstract numeration systems

Remark

- The numeration system in base k is an abstract numeration system built on the language

$$L = \{1, 2, \ldots, k - 1\}^\Sigma_k \cup \{\varepsilon\}$$
Abstract numeration systems

Remark

- The set \(\{n^2 : n \in \mathbb{N}\} \) is never \(k \)-recognizable but is \(S \)-recognizable for

\[
S = (a^* b^* \cup a^* c^*, \{a, b, c\}, a < b < c).
\]

<table>
<thead>
<tr>
<th>(L = a^* b^* \cup a^* c^*)</th>
<th>(\mathbb{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>0</td>
</tr>
<tr>
<td>(a)</td>
<td>1</td>
</tr>
<tr>
<td>(b)</td>
<td>2</td>
</tr>
<tr>
<td>(c)</td>
<td>3</td>
</tr>
<tr>
<td>(aa)</td>
<td>4</td>
</tr>
<tr>
<td>(ab)</td>
<td>5</td>
</tr>
<tr>
<td>(ac)</td>
<td>6</td>
</tr>
<tr>
<td>(bb)</td>
<td>7</td>
</tr>
<tr>
<td>(cc)</td>
<td>8</td>
</tr>
<tr>
<td>(aaa)</td>
<td>9</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
Abstract numeration systems

Theorem (Lecomte, Rigo, 2001)

Ultimately periodic sets are S-recognizable for all ANS S built on a regular language.
Abstract numeration systems

Theorem (Lecomte, Rigo, 2001)

Ultimately periodic sets are S-recognizable for all ANS S built on a regular language.

Corollary

A set $X \subseteq \mathbb{N}$ is S-recognizable for all ANS S if and only if X is ultimately periodic.

Corollary

A set $X \subseteq \mathbb{N}$ is S-recognizable for all ANS S if and only if X is 1-recognizable.
Plan

- Base k numeration
- Multi-dimensional k-recognizable sets
- Abstract numeration systems
- Multi-dimensional S-recognizable sets
Multi-dimensional S-recognizable sets

Let $S = (L, \Sigma, \prec)$ an abstract numeration system and $X \subseteq \mathbb{N}^d$.

$$\text{rep}_S(X) = \{(\text{rep}_S(n_1), \ldots, \text{rep}_S(n_d)) \mid (n_1, \ldots, n_d) \in X\}$$

A set $X \subseteq \mathbb{N}^d$ is S-recognizable if the language $\text{rep}_S(X)^\#$ over $(\Sigma \cup \{\#\})^d$ is accepted by a finite automaton.

X is 1-recognizable if it is S-recognizable for the ANS S built on a^*.
Multi-dimensional S-recognizable sets

Are the semi-linear sets a good extension of ultimately periodic sets for abstract numeration systems?
Multi-dimensional S-recognizable sets

Are the semi-linear sets a good extension of ultimately periodic sets for abstract numeration systems?

NO because in multi-dimensional case, semi-linear \neq 1-recognizable
Multi-dimensional S-recognizable sets

Are the semi-linear sets a good extension of ultimately periodic sets for abstract numeration systems?

NO because in multi-dimensional case, semi-linear \neq 1-recognizable

Example
The semi-linear set $X = \{(n, 2n)|n \in \mathbb{N}\}$ is not 1-recognizable.
Indeed, the unary representation of X

$$R^\# = \{(a^n \#, a^{2n})|n \in \mathbb{N}\}$$

is not regular.
Multi-dimensional S-recognizable sets

Theorem (Charlier, L, Rampersad 2010)

A subset X of \mathbb{N}^d is S-recognizable for all ANS S if and only if X is 1-recognizable.

\Rightarrow 1-recognizable sets are a good generalization of ultimately periodic sets for abstract numeration systems.
Example

Consider the set

\[X = \{(2n, 3m + 1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\} \cup \{(n, 2m) : n, m \in \mathbb{N} \text{ and } n < 2m\}. \]
Example

It is clear that \(X_1 = \{(2n, 3m + 1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\} \) is 1-recognizable...

Figure: Automaton accepting unary representation of \(X_1 \)
Example

... and that $X_2 = \{(n, 2m) : n, m \in \mathbb{N} \text{ and } n < 2m\}$ is 1-recognizable.

Figure: Automaton accepting unary representation of X_2
Example

Let S be an ANS. The set $X_1 = \{(2n, 3m + 1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\}$ is S-recognizable.

Indeed, the sets $\{2n : n \in \mathbb{N}\}$ and $\{3m + 1 : m \in \mathbb{N}\}$ are S-recognizable by the result of Lecomte and Rigo.
Example

Let S be an ANS. The set $X_1 = \{(2n, 3m + 1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\}$ is S-recognizable.

Indeed, the sets $\{2n : n \in \mathbb{N}\}$ and $\{3m + 1 : m \in \mathbb{N}\}$ are S-recognizable by the result of Lecomte and Rigo.

So the set $X' = \{(2n, 3m + 1) : n, m \in \mathbb{N}\}$ is S-recognizable, i.e. the language

$$A = \{(\text{rep}_S(2n), \text{rep}_S(3m + 1))\# : n, m \in \mathbb{N}\}$$

is accepted by a finite automaton.
Example

Let S be an ANS. The set $X_1 = \{(2n, 3m + 1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\}$ is S-recognizable.

Indeed, the sets $\{2n : n \in \mathbb{N}\}$ and $\{3m + 1 : m \in \mathbb{N}\}$ are S-recognizable by the result of Lecomte and Rigo.

So the set $X' = \{(2n, 3m + 1) : n, m \in \mathbb{N}\}$ is S-recognizable, i.e. the language

$$A = \{(rep_S(2n), rep_S(3m + 1))\# : n, m \in \mathbb{N}\}$$

is accepted by a finite automaton

Moreover, $B = \{(x, y)\# : x, y \in L, x \geq y\}$ is also accepted by a finite automaton
Example

Let S be an ANS. The set $X_1 = \{(2n, 3m+1) : n, m \in \mathbb{N} \text{ and } 2n \geq 3m + 1\}$ is S-recognizable.

Indeed, the sets $\{2n : n \in \mathbb{N}\}$ and $\{3m+1 : m \in \mathbb{N}\}$ are S-recognizable by the result of Lecomte and Rigo.

So the set $X' = \{(2n, 3m+1) : n, m \in \mathbb{N}\}$ is S-recognizable, i.e. the language

$$A = \{(rep_S(2n), rep_S(3m+1))\# : n, m \in \mathbb{N}\}$$

is accepted by a finite automaton.

Moreover, $B = \{(x, y)\# : x, y \in L, x \geq y\}$ is also accepted by a finite automaton.

Then, $rep_S(X_1)\# = A \cap B$ is accepted by a finite automaton and X_1 is S-recognizable.
We can construct in the same way an automaton accepting the S-representations of

$$X_2 = \{(n, 2m) : n, m \in \mathbb{N} \text{ and } n < 2m\}$$

Since the union of two regular languages is regular, we have that $X = X_1 \cup X_2$ is S-recognizable.
Multi-dimensional S-recognizable sets

Let A be a non-empty subset of $\{1, \ldots, d\}$. Define the subalphabet

$$\Sigma_A = \{x \in (\Sigma \cup \{\#\})^d : \text{the } i\text{-th component of } x \text{ is } \# \text{ exactly when } i \notin A\}.$$

Example

Let $\Sigma = \{a\}$ and $d = 4$.
If $A = \{1, 2, 3, 4\}$, then $\Sigma_A = \{(a, a, a, a)\}$.
If $A = \{1, 3\}$, then $\Sigma_A = \{(a, \#, a, \#)\}$.
Multi-dimensional S-recognizable sets

Let A be a non-empty subset of $\{1, \ldots, d\}$. Define the subalphabet

$$\Sigma_A = \{x \in (\Sigma \cup \{\#\})^d : \text{the } i\text{-th component of } x \text{ is } \# \text{ exactly when } i \notin A\}.$$

Theorem (Decomposition, Eilenberg, Elgot, Shepherdson 1969)

Let $R \subseteq (\Sigma^*)^d$. The language $R^\# \subseteq ((\Sigma \cup \{\#\})^d)^*$ is regular if and only if it is a finite union of languages of the form

$$R_0 \cdots R_t, \quad t \in \mathbb{N},$$

where each factor $R_i \subseteq (\Sigma_{A_i})^*$ is regular and $A_t \subseteq \cdots \subseteq A_0 \subseteq \{1, \ldots, d\}$.

Multi-dimensional S-recognizable sets

Example
Let $X = \{(5n, 5n + 4m + 1, 5n + 4m + 3, 5n) : n, m, \in \mathbb{N}\}$.

The unary representation of X is

$$R\# = ((a, a, a, a)^5)^*((\#, a, a, \#)^4)^*(\#, a, a, \#)(\#, \#, a, \#)^2.$$

Since $R\#$ is regular the set X is 1-recognizable.
Multi-dimensional S-recognizable sets

Example
Let $X = \{(5n, 5n + 4m + 1, 5n + 4m + 3, 5n) : n, m, \in \mathbb{N}\}$. The unary representation of X is

$$R^\# = ((a, a, a, a)^5)^*((\#, a, a, \#)^4)^*(\#, a, a, \#)(\#, \#, a, \#)^2.$$

Since $R^\#$ is regular the set X is 1-recognizable.

The set X can be written as

$$X = \{5(n, n, n, n)+4(0, m, m, 0)+(0, 1, 1, 0)+(0, 0, 2, 0) : n, m \in \mathbb{N}\},$$
Conclusion

In the multi-dimensional case, the sets that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets.
Thank you...