Primitive matrices over polynomial semirings

Horst Brunotte
(joint work with Shigeki Akiyama (Niigata University))

Numération 2011, Liège
Theorem (Perron - Frobenius)

Let \(A \in \mathbb{R}^{r \times r} \) have only nonnegative entries. Then \(A \) is primitive if and only if \(A \) is irreducible and aperiodic.
Characterization of real primitive matrices

Theorem (Perron - Frobenius)

Let $A \in \mathbb{R}^{r \times r}$ *have only nonnegative entries. Then* A *is primitive if and only if* A *is irreducible and aperiodic.*

Our aim:

Generalization of this result to matrices with polynomial entries
Characterization of real primitive matrices

Theorem (Perron - Frobenius)

Let $A \in \mathbb{R}^{r \times r}$ have only nonnegative entries. Then A is primitive if and only if A is irreducible and aperiodic.

Our aim:

Generalization of this result to matrices with polynomial entries

In the following we let

R a unital commutative semiring of characteristic 0
Characterization of real primitive matrices

Theorem (Perron - Frobenius)

Let $A \in \mathbb{R}^{r \times r}$ have only nonnegative entries. Then A is primitive if and only if A is irreducible and aperiodic.

Our aim:

Generalization of this result to matrices with polynomial entries

In the following we let

R a unital commutative semiring of characteristic 0

\mathcal{P}_+ a nonempty additively and multiplicatively closed subset of R with $0 \notin \mathcal{P}_+$ ('positive' elements)
Characterization of real primitive matrices

Theorem (Perron - Frobenius)

Let $A \in \mathbb{R}^{r \times r}$ have only nonnegative entries. Then A is primitive if and only if A is irreducible and aperiodic.

Our aim:

Generalization of this result to matrices with polynomial entries

In the following we let

R a unital commutative semiring of characteristic 0

\mathcal{P}_+ a nonempty additively and multiplicatively closed subset of R with $0 \notin \mathcal{P}_+$ (’positive’ elements)

$\mathcal{P} = \mathcal{P}_+ \cup \{0\}$ (’nonnegative’ elements)
We call the matrix $A \in P^{r \times r}$

- P_+-primitive if there is some $m \in \mathbb{N}_{>0}$ such that $A^m \in P_+^{r \times r}$. The least such m is called the (primitive) exponent of A w.r.t. P_+ and denoted by $\gamma_{P_+}(A)$.

Primitivity, irreducibility and aperiodicity

We call the matrix $A \in \mathcal{P}^{r \times r}$

- \mathcal{P}_+-primitive if there is some $m \in \mathbb{N}_{>0}$ such that $A^m \in \mathcal{P}_+^{r \times r}$. The least such m is called the (primitive) exponent of A w.r.t. \mathcal{P}_+ and denoted by $\gamma_{\mathcal{P}_+}(A)$.

- \mathcal{P}_+-irreducible if for every $i,j \in [r] = \{1, \ldots, r\}$ there is some $m \in \mathbb{N}$ such that $(A^m)_{ij} \in \mathcal{P}_+$.
Primitivity, irreducibility and aperiodicity

We call the matrix $A \in \mathcal{P}^{r \times r}$

- \mathcal{P}_+-primitive if there is some $m \in \mathbb{N}_{>0}$ such that $A^m \in \mathcal{P}_+^{r \times r}$. The least such m is called the (primitive) exponent of A w.r.t. \mathcal{P}_+ and denoted by $\gamma_{\mathcal{P}_+}(A)$.

- \mathcal{P}_+-irreducible if for every $i, j \in [r] = \{1, \ldots, r\}$ there is some $m \in \mathbb{N}$ such that $(A^m)_{ij} \in \mathcal{P}_+$.

- \mathcal{P}_+-aperiodic if the greatest common divisor of the set

$$\{\text{per}_1(A, \mathcal{P}_+), \ldots, \text{per}_r(A, \mathcal{P}_+)\}$$

equals 1 where we denote by $\text{per}_i(A, \mathcal{P}_+)$ the greatest common divisor of the set

$$\{n \in \mathbb{N}_{>0} : (A^n)_{ii} \in \mathcal{P}_+\}$$

if this set is nonvoid, and $\text{per}_i(A, \mathcal{P}_+) = \infty$, otherwise.
The easy case $r = 1$
The easy case $r = 1$

Theorem

Let

$$f = \sum_{k=0}^{\deg(f)} \kappa_k(f)X^k \in \mathcal{P}[X]$$

have positive degree.
The easy case \(r = 1 \)

Theorem

Let

\[
 f = \sum_{k=0}^{\deg(f)} \kappa_k(f)X^k \in \mathcal{P}[X]
\]

have positive degree. Then \(f \) is \(\mathcal{P}_+[X] \)-primitive
The easy case $r = 1$

Theorem

Let

$$f = \sum_{k=0}^{\deg(f)} \kappa_k(f)X^k \in \mathcal{P}[X]$$

have positive degree. Then f is $\mathcal{P}_+[X]$-primitive if and only if

$$\kappa_0(f), \kappa_1(f), \kappa_{\deg(f)-1}(f) \in \mathcal{P}_+.$$
The easy case $r = 1$

Theorem

Let

$$f = \sum_{k=0}^{\deg(f)} \kappa_k(f)X^k \in \mathcal{P}[X]$$

have positive degree. Then f is $\mathcal{P}_+[X]$-primitive if and only if

$$\kappa_0(f), \kappa_1(f), \kappa_{\deg(f)-1}(f) \in \mathcal{P}_+.$$

Notation:

$$\text{slc}(f) = \begin{cases} \kappa_{\deg(f)-1}(f), & \text{if } \deg(f) > 0 \\ \text{slc}(f) = 0, & \text{otherwise.} \end{cases}$$
Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ and assume that A_{ij} is $\mathcal{P}_+[X]$-primitive for all $i, j \in [r]$. Then A is $\mathcal{P}_+[X]$-primitive.
Matrices with primitive entries

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ and assume that A_{ij} is $\mathcal{P}_+[X]$-primitive for all $i, j \in [r]$. Then A is $\mathcal{P}_+[X]$-primitive. Moreover, if

$$\deg(A) = \max \{ \deg A_{ij} : i, j \in [r] \} \leq 3$$

we have $A \in \mathcal{P}_+[X]^{r \times r}$,
Matrices with primitive entries

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ and assume that A_{ij} is $\mathcal{P}_+[X]$-primitive for all $i, j \in [r]$. Then A is $\mathcal{P}_+[X]$-primitive. Moreover, if

$$\deg(A) = \max \{\deg A_{ij} : i, j \in [r]\} \leq 3$$

we have $A \in \mathcal{P}_+[X]^{r \times r}$, and otherwise

$$\gamma_{\mathcal{P}_+[X]}(A) \leq 2 \deg(A) - 3,$$

and this constant is best possible.
Generalization of an example of Perron

Let $f_1, \ldots, f_r \in \mathcal{P}[X]$ and

$$A = \begin{pmatrix}
0 & \cdots & \cdots & \cdots & 0 & f_1 \\
1 & 0 & \cdots & \cdots & 0 & f_2 \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & f_{r-1} \\
0 & \cdots & \cdots & 0 & 1 & f_r
\end{pmatrix}.$$
Generalization of an example of Perron

Let $f_1, \ldots, f_r \in \mathcal{P}[X]$ and

$$A = \begin{pmatrix}
0 & \cdots & \cdots & \cdots & \cdots & 0 & f_1 \\
1 & 0 & \cdots & \cdots & \cdots & 0 & f_2 \\
0 & & & & & & \\
\vdots & & & & & & \\
0 & \cdots & \cdots & 0 & f_{r-1} \\
0 & \cdots & \cdots & 0 & 1 & f_r
\end{pmatrix}.$$

If f_1 and f_r are $\mathcal{P}_+[X]$-primitive and f_2, \ldots, f_{r-1} are either $\mathcal{P}_+[X]$-primitive or zero then A is $\mathcal{P}_+[X]$-primitive.
Generalization of an example of Perron

Let $f_1, \ldots, f_r \in \mathcal{P}[X]$ and

$$A = \begin{pmatrix}
0 & \cdots & \cdots & \cdots & 0 & f_1 \\
1 & 0 & \cdots & \cdots & 0 & f_2 \\
0 & \vdots & & \vdots & \ddots & \vdots \\
\vdots & & & & & \ddots & 0 & f_{r-1} \\
0 & \cdots & \cdots & 0 & 1 & f_r
\end{pmatrix}.$$

If f_1 and f_r are $\mathcal{P}_+[X]$-primitive and f_2, \ldots, f_{r-1} are either $\mathcal{P}_+[X]$-primitive or zero then A is $\mathcal{P}_+[X]$-primitive, and we have

$$\gamma_{\mathcal{P}_+[X]}(A) \leq \max \left\{ 2 \max \{ \deg(f_1), \ldots, \deg(f_r) \} - 1, 4r^2(r - 1) + 1 \right\}.$$
Modification of the conditions on the entries of A

We call A

- strongly $\mathcal{P}_+[X]$-irreducible if for all $i,j \in [r]$ there is some $n \in \mathbb{N}$ such that the following three properties are satisfied:

1. $\kappa_0(A^n)_{ij} \in \mathcal{P}_+$
2. $\deg(A^n)_{ij} \geq \min\{1, \deg(A)\}$
3. $\deg(A^n)_{ij} > 0 \implies \kappa_1(A^n)_{ij} \in \mathcal{P}_+$.

Note:

- strong $\mathcal{P}_+[X]$-irreducibility = $\mathcal{P}_+[X]$-irreducibility
- $\deg(A) = 0 \implies$ strong $\mathcal{P}_+[X]$-irreducibility (strong $\mathcal{P}_+[X]$-aperiodicity, resp.) coincides with $\mathcal{P}_+[X]$-irreducibility (strong $\mathcal{P}_+[X]$-aperiodicity, resp.)
Modification of the conditions on the entries of A

We call A

- strongly $\mathcal{P}_+[X]$-irreducible if for all $i, j \in [r]$ there is some $n \in \mathbb{N}$ such that the following three properties are satisfied:
 1. $\kappa_0(A^n)_{ij} \in \mathcal{P}_+$
 2. $\deg(A^n)_{ij} \geq \min \{1, \deg(A)\}$
 3. $\deg(A^n)_{ij} > 0 \implies \kappa_1(A^n)_{ij} \in \mathcal{P}_+$.

- strongly $\mathcal{P}_+[X]$-aperiodic if the greatest common divisor of the set $\{\text{sper}_1(A), \ldots, \text{sper}_r(A)\}$ equals 1, where for $i \in [r]$ we denote by $\text{sper}_i(A)$ the greatest common divisor of the set of all positive integers which satisfy the three properties of strong irreducibility if this set is non-void, and $\text{sper}_i(A) = \infty$, otherwise.
Modification of the conditions on the entries of \(A \)

We call \(A \)

\begin{itemize}
 \item strongly \(\mathcal{P}_+[X] \)-irreducible if for all \(i, j \in [r] \) there is some \(n \in \mathbb{N} \) such that the following three properties are satisfied:
 \begin{enumerate}
 \item \(\kappa_0(A^n)_{ij} \in \mathcal{P}_+ \)
 \item \(\deg(A^n)_{ij} \geq \min \{1, \deg(A)\} \)
 \item \(\deg(A^n)_{ij} > 0 \implies \kappa_1(A^n)_{ij} \in \mathcal{P}_+ \).
 \end{enumerate}

 \item strongly \(\mathcal{P}_+[X] \)-aperiodic if the greatest common divisor of the set \(\{\text{sper}_1(A), \ldots, \text{sper}_r(A)\} \) equals 1, where for \(i \in [r] \) we denote by \(\text{sper}_i(A) \) the greatest common divisor of the set of all positive integers which satisfy the three properties of strong irreducibility if this set is non-void, and \(\text{sper}_i(A) = \infty \), otherwise.
\end{itemize}

Note:

\begin{itemize}
 \item strong \(\mathcal{P}_+[X] \)-irreducibility \(\implies \mathcal{P}_+[X] \)-irreducibility
\end{itemize}
Modification of the conditions on the entries of A

We call A

- strongly $\mathcal{P}_+[X]$-irreducible if for all $i, j \in [r]$ there is some $n \in \mathbb{N}$ such that the following three properties are satisfied:
 1. $\kappa_0(A^n)_{ij} \in \mathcal{P}_+$
 2. $\deg(A^n)_{ij} \geq \min\{1, \deg(A)\}$
 3. $\deg(A^n)_{ij} > 0 \implies \kappa_1(A^n)_{ij} \in \mathcal{P}_+$.

- strongly $\mathcal{P}_+[X]$-aperiodic if the greatest common divisor of the set $\{\text{sper}_1(A), \ldots, \text{sper}_r(A)\}$ equals 1, where for $i \in [r]$ we denote by $\text{sper}_i(A)$ the greatest common divisor of the set of all positive integers which satisfy the three properties of strong irreducibility if this set is non-void, and $\text{sper}_i(A) = \infty$, otherwise.

Note:

- strong $\mathcal{P}_+[X]$-irreducibility $\implies \mathcal{P}_+[X]$-irreducibility
- $\deg(A) = 0 \implies$ strong $\mathcal{P}_+[X]$-irreducibility (strong $\mathcal{P}_+[X]$-aperiodicity, resp.) coincides with $\mathcal{P}_+[X]$-irreducibility ($\mathcal{P}_+[X]$-aperiodicity, resp.)
Our first primitivity criterion

Theorem

The following statements are equivalent for $A \in \mathcal{P}[X]^{r \times r}$.

(i) A is $\mathcal{P}_+[X]$-primitive.
Our first primitivity criterion

Theorem
The following statements are equivalent for $A \in \mathcal{P}[X]^{r \times r}$.

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A is strongly $\mathcal{P}_+[X]$-irreducible and strongly $\mathcal{P}_+[X]$-aperiodic.
Our first primitivity criterion

Theorem

The following statements are equivalent for $A \in \mathcal{P}[X]^{r \times r}$.

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A is strongly $\mathcal{P}_+[X]$-irreducible and strongly $\mathcal{P}_+[X]$-aperiodic and there exists some positive integer n such that

$$\slc(A^n)_{ij} \in \mathcal{P}_+.$$

for all $i, j \in [r]$.
An example of strong irreducibility and aperiodicity

Let

\[A = \begin{pmatrix} X & 1 + X^2 \\ 1 + X^3 & 1 + X^4 \end{pmatrix} \in \mathbb{R}_{\geq 0}[X]^{2 \times 2}. \]
An example of strong irreducibility and aperiodicity

Let

\[
A = \begin{pmatrix} X & 1 + X^2 \\ 1 + X^3 & 1 + X^4 \end{pmatrix} \in \mathbb{R}_{\geq 0}[X]^{2\times 2}.
\]

We have

\[
A^2 = \begin{pmatrix} 1 + 2X^2 + X^3 + X^5 & 1 + X + X^2 + X^3 + X^4 + X^6 \\ 1 + X + X^3 + 2X^4 + X^7 & 2 + X^2 + X^3 + 2X^4 + X^5 + X^8 \end{pmatrix},
\]

But we have

\[
\text{slc}(A_n)_{11} = 0 \quad (n \in \mathbb{N}),
\]

thus \(A\) is not \(R_0[X]\)-primitive.
An example of strong irreducibility and aperiodicity

Let

\[A = \begin{pmatrix} X & 1 + X^2 \\ 1 + X^3 & 1 + X^4 \end{pmatrix} \in \mathbb{R}_{\geq 0}[X]^{2 \times 2}. \]

We have

\[A^2 = \begin{pmatrix} 1 + 2X^2 + X^3 + X^5 & 1 + X + X^2 + X^3 + X^4 + X^6 \\ 1 + X + X^3 + 2X^4 + X^7 & 2 + X^2 + X^3 + 2X^4 + X^5 + X^8 \end{pmatrix}, \]

and for \(n \geq 3 \) and \(i, j \in \{1, 2\} \) we find

\[\kappa_0(A^n)_{ij} > 0, \quad \kappa_1(A^n)_{ij} > 0, \quad \deg (A^n)_{ij} \geq 9. \]
An example of strong irreducibility and aperiodicity

Let
\[A = \begin{pmatrix} X & 1 + X^2 \\ 1 + X^3 & 1 + X^4 \end{pmatrix} \in \mathbb{R}_{\geq 0}[X]^{2\times 2}. \]

We have
\[A^2 = \begin{pmatrix} 1 + 2X^2 + X^3 + X^5 & 1 + X + X^2 + X^3 + X^4 + X^6 \\ 1 + X + X^3 + 2X^4 + X^7 & 2 + X^2 + X^3 + 2X^4 + X^5 + X^8 \end{pmatrix}, \]

and for \(n \geq 3 \) and \(i, j \in \{1, 2\} \) we find
\[\kappa_0(A^n)_{ij} > 0, \quad \kappa_1(A^n)_{ij} > 0, \quad \deg(A^n)_{ij} \geq 9. \]

Thus \(A \) is strongly \(\mathbb{R}_{>0}[X] \)-irreducible and strongly \(\mathbb{R}_{>0}[X] \)-aperiodic.
An example of strong irreducibility and aperiodicity

Let
\[A = \begin{pmatrix} X & 1 + X^2 \\ 1 + X^3 & 1 + X^4 \end{pmatrix} \in \mathbb{R}_{\geq 0}[X]^{2\times 2}. \]

We have
\[A^2 = \begin{pmatrix} 1 + 2X^2 + X^3 + X^5 & 1 + X + X^2 + X^3 + X^4 + X^6 \\ 1 + X + X^3 + 2X^4 + X^7 & 2 + X^2 + X^3 + 2X^4 + X^5 + X^8 \end{pmatrix}, \]

and for \(n \geq 3 \) and \(i, j \in \{1, 2\} \) we find
\[\kappa_0(A^n)_{ij} > 0, \quad \kappa_1(A^n)_{ij} > 0, \quad \deg(A^n)_{ij} \geq 9. \]

Thus \(A \) is strongly \(\mathbb{R}_{>0}[X] \)-irreducible and strongly \(\mathbb{R}_{>0}[X] \)-aperiodic. But we have
\[\text{slc}(A^n)_{11} = 0 \quad (n \in \mathbb{N}), \]

thus \(A \) is not \(\mathbb{R}_{>0}[X] \)-primitive.
Controlling the \slc\-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases} 1, & \text{if } \slc(f) \in \mathcal{P}_+, \\ 0, & \text{otherwise.} \end{cases}$$
Controlling the slc-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases} 1, & \text{if } \text{slc}(f) \in P_+, \\ 0, & \text{otherwise.} \end{cases}$$

We define a map

$$s : \begin{cases} R[X] \to (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \\ f \mapsto (\deg(f), \delta(f)) \end{cases}.$$
Controlling the slc-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases}
1, & \text{if } \text{slic}(f) \in \mathcal{P}_+, \\
0, & \text{otherwise}.
\end{cases}$$

We define a map

$$s : \begin{cases}
R[X] & \rightarrow (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \\
f & \mapsto (\deg(f), \delta(f)).
\end{cases}$$

Our aim: Endow s with more structure!
Controlling the slc-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases} 1, & \text{if } \text{slc}(f) \in \mathcal{P}_+, \\ 0, & \text{otherwise}. \end{cases}$$

We define a map

$$s : \begin{cases} R[X] \rightarrow (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \\ f \mapsto (\deg(f), \delta(f)) \end{cases}.$$

Our aim: Endow s with more structure!

On the set

$$\mathcal{D} = ((\mathbb{N} \cup \{-\infty\}) \times \{0, 1\}) \setminus \{(-\infty, 1), (0, 1)\}.$$
Controlling the slc-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases}
1, & \text{if } \text{slc}(f) \in P_+ , \\
0, & \text{otherwise}.
\end{cases}$$

We define a map

$$s : \begin{cases}
R[X] & \rightarrow (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \\
f & \mapsto (\deg(f), \delta(f))
\end{cases}.$$

Our aim: Endow s with more structure!

On the set

$$D = (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \setminus \{(-\infty, 1), (0, 1)\}$$

we introduce two binary operations:

$$(n, a) \oplus (m, b) = (\max \{ n, m \}, \delta_+(n, a, m, b))$$
Controlling the slc-coefficients of the powers of A

For $f \in R[X]$ we set

$$\delta(f) = \begin{cases}
1, & \text{if } \text{sle}(f) \in \mathcal{P}_+, \\
0, & \text{otherwise}.
\end{cases}$$

We define a map

$$s : \begin{cases}
R[X] & \rightarrow (\mathbb{N} \cup \{-\infty\}) \times \{0, 1\} \\
f & \mapsto (\deg(f), \delta(f))
\end{cases}.$$

Our aim: Endow s with more structure!

On the set

$$\mathcal{D} = ((\mathbb{N} \cup \{-\infty\}) \times \{0, 1\}) \setminus \{(-\infty, 1), (0, 1)\}$$

we introduce two binary operations:

$$(n, a) \oplus (m, b) = (\max\{n, m\}, \delta_+(n, a, m, b))$$

and

$$(n, a) \otimes (m, b) = (n + m, \delta_\times(n, a, m, b)) .$$
Completion of the definitions of the binary operations on \mathcal{D}

Definition of the function $\delta_+ : \mathcal{D} \times \mathcal{D} \rightarrow \{0, 1\}$:
Completion of the definitions of the binary operations on \mathcal{D}

Definition of the function $\delta_+ : \mathcal{D} \times \mathcal{D} \rightarrow \{0, 1\}$:
$\delta_+ (n, a, m, b) = 1$ if one of the following three conditions is satisfied:

(i) $\max \{|m - n|, a, b\} = 1$,
(ii) $n > m + 1$ and $a = 1$,
(iii) $m > n + 1$ and $b = 1$,

otherwise $\delta_+ (n, a, m, b) = 0$.

$(\mathcal{D}, \oplus, \otimes)$ is a commutative dioid with neutral elements $\epsilon = (-\infty, 0)$ and $e = (0, 0)$, respectively.
Completion of the definitions of the binary operations on \mathcal{D}

Definition of the function $\delta_+ : \mathcal{D} \times \mathcal{D} \longrightarrow \{0, 1\}$:

$\delta_+(n, a, m, b) = 1$ if one of the following three conditions is satisfied:

(i) $\max\{|m - n|, a, b\} = 1$,
(ii) $n > m + 1$ and $a = 1$,
(iii) $m > n + 1$ and $b = 1$,

otherwise $\delta_+(n, a, m, b) = 0$.

Definition of the function $\delta_\times : \mathcal{D} \times \mathcal{D} \longrightarrow \{0, 1\}$:

$\delta_\times(n, a, m, b) = \max\{a, b\}$ if $n, m \in \mathbb{N}$, and $\delta_\times(n, a, m, b) = 0$, otherwise.

$(\mathcal{D}, \oplus, \otimes)$ is a commutative dioid with neutral elements $\epsilon = (-\infty, 0)$ and $e = (0, 0)$, respectively.
Completion of the definitions of the binary operations on \mathcal{D}

Definition of the function $\delta_+: \mathcal{D} \times \mathcal{D} \rightarrow \{0, 1\}$:
$\delta_+(n, a, m, b) = 1$ if one of the following three conditions is satisfied:

(i) $\max\{|m - n|, a, b\} = 1$,
(ii) $n > m + 1$ and $a = 1$,
(iii) $m > n + 1$ and $b = 1$,
otherwise $\delta_+(n, a, m, b) = 0$.

Definition of the function $\delta\times: \mathcal{D} \times \mathcal{D} \rightarrow \{0, 1\}$:
$\delta\times(n, a, m, b) = \max\{a, b\}$ if $n, m \in \mathbb{N}$, and $\delta\times(n, a, m, b) = 0$, otherwise.

$(\mathcal{D}, \oplus, \otimes)$ is a commutative dioid with neutral elements $\varepsilon = (-\infty, 0)$ and $e = (0, 0)$, respectively.
Relation between $R[X]$ and \mathcal{D}

\mathcal{D} is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in \mathcal{D}$).

The mapping $s: \{R[X] \rightarrow \mathcal{D} \}$ is a ring homomorphism which we extend to $s: R[X] \times R[X] \rightarrow \mathcal{D} \times \mathcal{D}$.

The subset $Q = \{ (n, 1) \in \mathcal{D} : n \in \mathbb{N} > 0 \}$ is additively and multiplicatively closed and $\varepsilon = (\infty, 0) \in Q$.
Relation between $R[X]$ and \mathcal{D}

\mathcal{D} is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in \mathcal{D}$).

Relation between $R[X]$ and \mathcal{D}

\mathcal{D} is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in \mathcal{D}$).

The mapping

$$s : \begin{cases} R[X] & \rightarrow \mathcal{D} \\ f & \mapsto (\deg(f), \delta(f)) \end{cases}$$

is a ring homomorphism.
Relation between $R[X]$ and \mathcal{D}

\mathcal{D} is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in \mathcal{D}$).

The mapping

$$s : \begin{cases} R[X] &\longrightarrow \mathcal{D} \\ f &\mapsto (\deg(f), \delta(f)) \end{cases}$$

is a ring homomorphism which we extend to

$$s : R[X]^{r\times r} \longrightarrow \mathcal{D}^{r\times r}.$$
Relation between $R[X]$ and \mathcal{D}

\mathcal{D} is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in \mathcal{D}$).

The mapping

$$s : \begin{cases} R[X] & \longrightarrow \mathcal{D} \\ f & \mapsto (\deg(f), \delta(f)) \end{cases}$$

is a ring homomorphism which we extend to

$$s : R[X]^{r \times r} \longrightarrow \mathcal{D}^{r \times r}.$$

The subset

$$Q = \{(n, 1) \in \mathcal{D} : n \in \mathbb{N}_{>0}\}$$

is additively and multiplicatively closed.
Relation between $R[X]$ and D

D is a commutative unital semiring of characteristic 0 with idempotent sum (i.e., $\alpha \oplus \alpha = \alpha$ for every $\alpha \in D$).

The mapping

$$s : \begin{cases} R[X] & \longrightarrow D \\ f & \mapsto (\deg(f), \delta(f)) \end{cases}$$

is a ring homomorphism which we extend to

$$s : R[X]^{r \times r} \longrightarrow D^{r \times r}.$$

The subset

$$Q = \{(n, 1) \in D : n \in \mathbb{N}_{>0}\}$$

is additively and multiplicatively closed and

$$\varepsilon = (-\infty, 0) \notin Q.$$
Our second primitivity criterion

For $A \in R[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $R^{r \times r}$ with entries

$$(\kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \; i, j \in [r]).$$
Our second primitivity criterion

For $A \in R[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $R^{r \times r}$ with entries

$$
(k \kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \; i, j \in [r]).
$$

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then A is $\mathcal{P}_+[X]$-primitive if and only if the following conditions hold:
Our second primitivity criterion

For $A \in R[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $R^{r \times r}$ with entries

$$(\kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \ i, j \in [r]).$$

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then A is $\mathcal{P}_+[X]$-primitive if and only if the following conditions hold:

1. $\kappa_0(A)$ is \mathcal{P}_+-primitive.
Our second primitivity criterion

For $A \in \mathbb{R}[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $\mathbb{R}^{r \times r}$ with entries

$$(\kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \ i, j \in [r]).$$

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then A is $\mathcal{P}_+[X]$-primitive if and only if the following conditions hold:

(i) $\kappa_0(A)$ is \mathcal{P}_+-primitive.

(ii) $\kappa_1(A)$ is nonzero.
Our second primitivity criterion

For $A \in R[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $R^{r \times r}$ with entries

$$(\kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \ i, j \in [r]).$$

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then A is $\mathcal{P}_+[X]$-primitive if and only if the following conditions hold:

(i) $\kappa_0(A)$ is \mathcal{P}_+-primitive.

(ii) $\kappa_1(A)$ is nonzero.

(iii) $s(A)$ is Q-irreducible and Q-aperiodic.
Our second primitivity criterion

For $A \in R[X]^{r \times r}$ we denote by $\kappa_k(A)$ the matrix in $R^{r \times r}$ with entries

$$(\kappa_k(A))_{ij} = \kappa_k(A_{ij}) \quad (k \in \mathbb{N}, \ i,j \in [r]).$$

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then A is $\mathcal{P}_+[X]$-primitive if and only if the following conditions hold:

(i) $\kappa_0(A)$ is \mathcal{P}_+-primitive.

(ii) $\kappa_1(A)$ is nonzero.

(iii) $s(A)$ is Q-irreducible and Q-aperiodic.

Our aim: Enhance condition (iii)!
Almost linear periodic sequences in monoids

Definition
The sequence \(a^* = (a_n)_{n \in \mathbb{N}} \) of elements of the monoid \((\mathcal{M}, \circ) \) is called almost linear periodic if there are \(N \in \mathbb{N}, \ p \in \mathbb{N}_{>0} \) and \(q \in \mathcal{M} \) such that for every \(n > N \)

\[
(*) \quad a_{n+p} = a_n \circ q^p.
\]

The smallest number \(N \) with the property that there are \(p \in \mathbb{N}_{>0} \) and \(q \in \mathcal{M} \) such that \((*)\) holds for every \(n > N \) is called the linear defect of \(a^* \), and we write \(N = \text{ldef} a^* \).

The minimal number \(p \in \mathbb{N}_{>0} \) such that there is some \(q \in \mathcal{M} \) such that \((*)\) holds for every \(n > \text{ldef} a^* \) is called the linear period of \(a^* \), and we write \(p = \text{lper} a^* \).

An element \(q \) with \((*)\) is called a linear factor of \(a^* \).

In case \(q \) is unique we write \(q = \text{lfac} a^* \).
Almost linear periodic sequences in monoids

Definition
The sequence $a^* = (a_n)_{n \in \mathbb{N}}$ of elements of the monoid (\mathcal{M}, \circ) is called almost linear periodic if there are $N \in \mathbb{N}$, $p \in \mathbb{N}_{>0}$ and $q \in \mathcal{M}$ such that for every $n > N$

$$(*) \quad a_{n+p} = a_n \circ q^p.$$

The smallest number N with the property that there are $p \in \mathbb{N}_{>0}$ and $q \in \mathcal{M}$ such that $(*)$ holds for every $n > N$ is called the linear defect of a^*, and we write $N = \text{ldef } a^*$.

Example
$a^* = (n+1, 1)_{n \in \mathbb{N}} \in \mathcal{D}$ is almost linear periodic with $\text{ldef } a^* = 0$ and $\text{lper } a^* = 1$, and $(1, 0)$ and $(1, 1)$ are linear factors of a^*.
Almost linear periodic sequences in monoids

Definition
The sequence $a^* = (a_n)_{n \in \mathbb{N}}$ of elements of the monoid (\mathcal{M}, \circ) is called almost linear periodic if there are $N \in \mathbb{N}$, $p \in \mathbb{N}_{>0}$ and $q \in \mathcal{M}$ such that for every $n > N$

\begin{equation}
(\ast) \quad a_{n+p} = a_n \circ q^p.
\end{equation}

The smallest number N with the property that there are $p \in \mathbb{N}_{>0}$ and $q \in \mathcal{M}$ such that (\ast) holds for every $n > N$ is called the linear defect of a^*, and we write $N = \text{ldef } a^*$. The minimal number $p \in \mathbb{N}_{>0}$ such that there is some $q \in \mathcal{M}$ such that (\ast) holds for every $n > \text{ldef } a^*$ is called the linear period of a^*, and we write $p = \text{lper } a^*$.
Almost linear periodic sequences in monoids

Definition
The sequence \(a^* = (a_n)_{n \in \mathbb{N}} \) of elements of the monoid \((M, \circ)\) is called almost linear periodic if there are \(N \in \mathbb{N}, \; p \in \mathbb{N}_{>0} \) and \(q \in M \) such that for every \(n > N \)
\[(*) \quad a_{n+p} = a_n \circ q^p.\]
The smallest number \(N \) with the property that there are \(p \in \mathbb{N}_{>0} \) and \(q \in M \) such that \((*)\) holds for every \(n > N \) is called the linear defect of \(a^* \), and we write \(N = \text{ldef } a^* \). The minimal number \(p \in \mathbb{N}_{>0} \) such that there is some \(q \in M \) such that \((*)\) holds for every \(n > \text{ldef } a^* \) is called the linear period of \(a^* \), and we write \(p = \text{lper } a^* \). An element \(q \) with \((*)\) is called a linear factor of \(a^* \).
Almost linear periodic sequences in monoids

Definition
The sequence \(a^* = (a_n)_{n \in \mathbb{N}} \) of elements of the monoid \((M, \circ)\) is called almost linear periodic if there are \(N \in \mathbb{N}, \ p \in \mathbb{N}_{>0} \) and \(q \in M \) such that for every \(n > N \)
\[(*) \quad a_{n+p} = a_n \circ q^p.\]
The smallest number \(N \) with the property that there are \(p \in \mathbb{N}_{>0} \) and \(q \in M \) such that \((*)\) holds for every \(n > N \) is called the linear defect of \(a^* \), and we write \(N = \text{ldef } a^* \). The minimal number \(p \in \mathbb{N}_{>0} \) such that there is some \(q \in M \) such that \((*)\) holds for every \(n > \text{ldef } a^* \) is called the linear period of \(a^* \), and we write \(p = \text{lper } a^* \). An element \(q \) with \((*)\) is called a linear factor of \(a^* \). In case \(q \) is unique we write \(q = \text{lfac } a^* \).
Almost linear periodic sequences in monoids

Definition
The sequence \(a^*(n)_{n \in \mathbb{N}}\) of elements of the monoid \((M, \circ)\) is called almost linear periodic if there are \(N \in \mathbb{N}\), \(p \in \mathbb{N}_{>0}\) and \(q \in M\) such that for every \(n > N\)
\[
(*) \quad a_{n+p} = a_n \circ q^p.
\]
The smallest number \(N\) with the property that there are \(p \in \mathbb{N}_{>0}\) and \(q \in M\) such that \((*)\) holds for every \(n > N\) is called the linear defect of \(a^*\), and we write \(N = \text{ldef } a^*\). The minimal number \(p \in \mathbb{N}_{>0}\) such that there is some \(q \in M\) such that \((*)\) holds for every \(n > \text{ldef } a^*\) is called the linear period of \(a^*\), and we write \(p = \text{lper } a^*\). An element \(q\) with \((*)\) is called a linear factor of \(a^*\). In case \(q\) is unique we write \(q = \text{lfac } a^*\).

Example
\(a^* = (n + 1, 1)_{n \in \mathbb{N}} \in D^\mathbb{N}\) is almost linear periodic with \(\text{ldef } a^* = 0\) and \(\text{lper } a^* = 1\), and \((1, 0)\) and \((1, 1)\) are linear factors of \(a^*\).
Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic if for all $i, j \in [r]$ the sequence $(B^{n})_{ij} = ((B_{n})_{ij})_{n \in \mathbb{N}}$ is almost linear periodic.

The numbers $l_{\text{per}}(B) = \text{lcm}\{l_{\text{per}}((B^{n})_{ij}) : i, j \in [r]\}$ and $l_{\text{def}}(B^{\star}) = \max\{l_{\text{def}}((B^{n})_{ij}) : i, j \in [r]\}$ are called the linear period and the linear defect, respectively, of B.

A matrix Q given by linear factors Q_{ij} of the sequences $((B_{n})_{ij})_{n \in \mathbb{N}} (i, j \in [r])$ is called a linear factor matrix of B.

If there is a unique linear factor matrix we write $\text{lfac}(B) = \text{lfac}((B_{n})_{n \in \mathbb{N}})$.
Generalization of notions of M. Gavalec (2000)

Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic.
Generalization of notions of M. Gavalec (2000)

Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic if for all $i, j \in [r]$ the sequence

$$(B^*)_{ij} = ((B^n)_{ij})_{n \in \mathbb{N}}$$

is almost linear periodic.
Generalization of notions of M. Gavalec (2000)

Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic if for all $i, j \in [r]$ the sequence

$$(B^*)_{ij} = ((B^n)_{ij})_{n \in \mathbb{N}}$$

is almost linear periodic. The numbers

$$\text{lper } B = \text{lcm} \{ \text{lper}(B^*)_{ij} : i, j \in [r] \}$$

and

$$\text{ldef } B^* = \max \{ \text{ldef } (B^*)_{ij} : i, j \in [r] \}$$

are called the linear period and the linear defect, respectively, of B.
Generalization of notions of M. Gavalec (2000)

Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic if for all $i, j \in [r]$ the sequence

$$(B^*)_{ij} = ((B^n)_{ij})_{n \in \mathbb{N}}$$

is almost linear periodic. The numbers

$$lper\ B = \text{lcm}\ \{lper(B^*)_{ij} : i, j \in [r]\}$$

and

$$ldef\ B^* = \max\ \{ldef\ (B^*)_{ij} : i, j \in [r]\}$$

are called the linear period and the linear defect, respectively, of B. A matrix Q given by linear factors Q_{ij} of the sequences

$$((B^n)_{ij})_{n \in \mathbb{N}} \quad (i, j \in [r])$$

is called a linear factor matrix of B.
Let B be an $(r \times r)$-matrix over a commutative dioid. We call B almost linear periodic if for all $i, j \in [r]$ the sequence

$$(B^*)_{ij} = ((B^n)_{ij})_{n \in \mathbb{N}}$$

is almost linear periodic. The numbers

$$\text{lper } B = \text{lcm} \{ \text{lper} (B^*)_{ij} : i, j \in [r] \}$$

and

$$\text{ldef } B^* = \max \{ \text{ldef} (B^*)_{ij} : i, j \in [r] \}$$

are called the linear period and the linear defect, respectively, of B. A matrix Q given by linear factors Q_{ij} of the sequences

$$(((B^n)_{ij})_{n \in \mathbb{N}} \quad (i, j \in [r])$$

is called a linear factor matrix of B. If there is a unique linear factor matrix we write $\text{lfac} (B) = \text{lfac} ((B^n)_{n \in \mathbb{N}})$.
Irreducible matrices over commutative semirings

Let $A \in R^{r \times r}$.

- The digraph $G(A)$ is the weighted digraph $([r], E, v)$ with vertex set $[r]$, arc set

$$E = \{(i, j) \in [r]^2 : A_{ij} \neq 0\}$$

and weight function $v : E \to R \setminus \{0\}$ with

$$v(i, j) = A_{ij}$$

for all $(i, j) \in E$. Note: $P^+\text{-irreducibility}$ implies irreducibility, but the converse does not hold (e.g., take $(0, 0) \in D$ and $P^+ = Q$).
Irreducible matrices over commutative semirings

Let \(A \in R^{r \times r} \).

- The digraph \(G(A) \) is the weighted digraph \(([r], E, v)\) with vertex set \([r]\), arc set

\[
E = \{(i,j) \in [r]^2 : A_{ij} \neq 0\}
\]

and weight function \(v : E \to R \setminus \{0\} \) with

\[
v(i,j) = A_{ij}
\]

for all \((i,j) \in E\).

- The matrix \(A \) is called irreducible if the graph \(G(A) \) is strongly connected,
Irreducible matrices over commutative semirings

Let $A \in R^{r \times r}$.

- The digraph $G(A)$ is the weighted digraph $([r], E, v)$ with vertex set $[r]$, arc set

 $$E = \{(i,j) \in [r]^2 : A_{ij} \neq 0\}$$

 and weight function $v : E \to R \setminus \{0\}$ with

 $$v(i,j) = A_{ij}$$

 for all $(i,j) \in E$.

- The matrix A is called irreducible if the graph $G(A)$ is strongly connected, i.e., if for all vertices $i,j \in [r]$ there is a cycle in $G(A)$ which contains both i and j.
Irreducible matrices over commutative semirings

Let $A \in R^{r \times r}$.

- The digraph $G(A)$ is the weighted digraph $([r], E, v)$ with vertex set $[r]$, arc set $E = \{(i, j) \in [r]^2 : A_{ij} \neq 0\}$ and weight function $v : E \to R \setminus \{0\}$ with $v(i, j) = A_{ij}$ for all $(i, j) \in E$.

- The matrix A is called irreducible if the graph $G(A)$ is strongly connected, i.e., if for all vertices $i, j \in [r]$ there is a cycle in $G(A)$ which contains both i and j.

Note: \mathcal{P}_+-irreducibility implies irreducibility, but the converse does not hold (e.g., take $(0, 0) \in \mathcal{D}$ and $\mathcal{P}_+ = \mathbb{Q}$).
Theorem (M. Gavalec (2000))

Let M be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, $\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +)$).

Let $B \in M_{r \times r}$ be irreducible. Then the following statements hold.

- B is almost linear periodic.
- $(\lfac(B))_{ij} = \lambda(B)$ for each $i, j \in [r]$ where $\lambda(B)$ denotes the maximal cycle mean weight of $G(B)$.
- $\lper(B)$ can be computed in $O(r^3)$ time.
Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \(M \) be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation.
Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \mathcal{M} be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, $\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)$.)
Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \mathcal{M} be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, $\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +)$.)

Let $B \in \mathcal{M}^{r \times r}$ be irreducible.
Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \(\mathcal{M} \) be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, \(\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +) \)).

Let \(B \in \mathcal{M}^{r \times r} \) be irreducible. Then the following statements hold.

- \(B \) is almost linear periodic.
Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \mathcal{M} be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, $\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{ -\infty \}, \max, +)$).

Let $B \in \mathcal{M}^{r \times r}$ be irreducible. Then the following statements hold.

- B is almost linear periodic.
- $(\text{lfac}(B))_{ij} = \lambda(B)$ for each $i, j \in [r]$ where $\lambda(B)$ denotes the maximal cycle mean weight of $\mathcal{G}(B)$.

Irreducible matrices over certain max-plus algebras

Theorem (M. Gavalec (2000))

Let \mathcal{M} be a max-plus algebra generated by a divisible abelian linearly ordered group in additive notation (for instance, $\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +)$).

Let $B \in \mathcal{M}^{r \times r}$ be irreducible. Then the following statements hold.

- B is almost linear periodic.
- $(\lfac(B))_{ij} = \lambda(B)$ for each $i, j \in [r]$ where $\lambda(B)$ denotes the maximal cycle mean weight of $G(B)$.
- $\lper(B)$ can be computed in $O(r^3)$ time.
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group

Example \((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).

Remark \(D\) cannot be embedded into a max-plus algebra because otherwise \((1, 1) = (1, 0) \oplus (0, 0) = \max\{1, 0\} \in \{1, 0\}\): Contradiction!
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and \(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \notin G\).
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and \(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \not\in G\) and

\[
\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).
\]
A remark on max-plus algebras

Definition

Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and
\[G^* = G \cup \{\varepsilon\}\] with \(\varepsilon \not\in G\) and
\[\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).\]

We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the max-plus algebra generated by \(G\).
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and \(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \notin G\) and

\[
e \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).
\]

We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the max-plus algebra generated by \(G\).

Example
\((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and \(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \notin G\) and
\[
\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).
\]
We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the max-plus algebra generated by \(G\).

Example
\((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).

Remark
\(\mathcal{D}\) cannot be embedded into a max-plus algebra because otherwise
\[
(1, 1) = (1, 0) \oplus (0, 0)
\]
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and \(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \notin G\) and

\[\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).\]

We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the max-plus algebra generated by \(G\).

Example
\((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).

Remark
\(D\) cannot be embedded into a max-plus algebra because otherwise

\[(1, 1) = (1, 0) \oplus (0, 0) = \max \{(1, 0), (0, 0)\}\]
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and
\[G^* = G \cup \{\varepsilon\} \] with \(\varepsilon \notin G\) and

\[\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*). \]

We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the max-plus algebra generated by \(G\).

Example
\((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).

Remark
\(D\) cannot be embedded into a max-plus algebra because otherwise
\[(1, 1) = (1, 0) \oplus (0, 0) = \max \{(1, 0), (0, 0)\} \notin \{(1, 0), (0, 0)\} : \]
A remark on max-plus algebras

Definition
Let \((G, +, \leq)\) be an abelian linearly ordered divisible group and
\(G^* = G \cup \{\varepsilon\}\) with \(\varepsilon \notin G\) and
\[
\varepsilon \leq x, \quad \text{and} \quad \varepsilon + x = x + \varepsilon = \varepsilon \quad (x \in G^*).
\]

We call the dioid \((G^*, \oplus, \otimes)\) with \(\oplus = \max\) and \(\otimes = +\) the
max-plus algebra generated by \(G\).

Example
\((\mathbb{R}, +, \leq)\) generates \(\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).

Remark
\(D\) cannot be embedded into a max-plus algebra because otherwise
\[
(1, 1) = (1, 0) \oplus (0, 0) = \max \{(1, 0), (0, 0)\} \in \{(1, 0), (0, 0)\}:
\]
Contradiction!
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

\[F \in \mathbb{R}^{r \times r} \text{ max} = \text{matrix of first components of } B, \quad i.e., \quad F_{ij} = (B_{ij})_{1} \quad (i, j \in \left[\right]r) \]

\[S \in \{0, 1\}^{r \times r} = \text{matrix of second components of } B_{n}, \quad i.e., \quad (S_{n})_{ij} = ((B_{n})_{ij})_{2} \quad (i, j \in \left[\right]r) \]

Note:
\[F_{n} = (B_{n})_{1} \quad (n \in \mathbb{N}) \text{ where addition and multiplication on the left hand side is performed in } \mathbb{R}^{\text{max}}. \]

Every cycle of maximum mean weight in $G(B)$ is a cycle of maximum mean weight in $G(F)$ (some more technical effort is needed to define the mean weight of a cycle in $G(B)$).
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

- $F \in \mathbb{R}^{r \times r}_{\text{max}}$ = matrix of first components of B, i.e.,
 \[F_{ij} = (B_{ij})_1 \quad (i, j \in [r]). \]
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

- $F \in \mathbb{R}^{r \times r}_{\text{max}}$ = matrix of first components of B, i.e.,
 \[F_{ij} = (B_{ij})_1 \quad (i, j \in [r]). \]

- $S_n \in \{0, 1\}^{r \times r}$ = matrix of second components of B^n, i.e.,
 \[(S_n)_{ij} = ((B^n)_{ij})_2 \quad (i, j \in [r]). \]
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

- $F \in \mathbb{R}_{\text{max}}^{r \times r} =$ matrix of first components of B, i.e.,

 $$F_{ij} = (B_{ij})_1 \quad (i, j \in [r]).$$

- $S_n \in \{0, 1\}^{r \times r} =$ matrix of second components of B^n, i.e.,

 $$(S_n)_{ij} = ((B^n)_{ij})_2 \quad (i, j \in [r]).$$

Note:

- $F^n = (B^n)_1 \quad (n \in \mathbb{N})$ where addition and multiplication on the left hand side is performed in \mathbb{R}_{max}.

Every cycle of maximum mean weight in $G(B)$ is a cycle of maximum mean weight in $G(F)$(some more technical effort is needed to define the mean weight of a cycle in $G(B)$).
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

- $F \in \mathbb{R}_{\text{max}}^{r \times r}$ = matrix of first components of B, i.e.,
 \[F_{ij} = (B_{ij})_1 \quad (i, j \in [r]). \]

- $S_n \in \{0, 1\}^{r \times r}$ = matrix of second components of B^n, i.e.,
 \[(S_n)_{ij} = ((B^n)_{ij})_2 \quad (i, j \in [r]). \]

Note:

- $F^n = (B^n)_1 \quad (n \in \mathbb{N})$ where addition and multiplication on the left hand side is performed in \mathbb{R}_{max}.

- Every cycle of maximum mean weight in $\mathcal{G}(B)$ is a cycle of maximum mean weight in $\mathcal{G}(F)$.
Splitting up a matrix over \mathcal{D}

Let $B \in \mathcal{D}^{r \times r}$.

- $F \in \mathbb{R}_{\text{max}}^{r \times r} = \text{matrix of first components of } B$, i.e.,
 \[
 F_{ij} = (B_{ij})_1 \quad (i, j \in [r]).
 \]

- $S_n \in \{0, 1\}^{r \times r} = \text{matrix of second components of } B^n$, i.e.,
 \[
 (S_n)_{ij} = ((B^n)_{ij})_2 \quad (i, j \in [r]).
 \]

Note:

- $F^n = (B^n)_1 \quad (n \in \mathbb{N})$ where addition and multiplication on the left hand side is performed in \mathbb{R}_{max}.
- Every cycle of maximum mean weight in $G(B)$ is a cycle of maximum mean weight in $G(F)$ (some more technical effort is needed to define the mean weight of a cycle in $G(B)$).
Almost linear periodicity of the matrix of first components
Almost linear periodicity of the matrix of first components

Lemma

Let $B \in \mathcal{D}^{r \times r}$ be irreducible.

- F is almost linear periodic.

Moreover, $l_{\text{per}}(F)$ and $\lambda(B)$ can be computed in $O(r^3)$ time.

The sequence $(S_n)_{n \in \mathbb{N}}$ is ultimately constant, i.e., there is some $M \in \mathbb{N}$ with $S_n = S_M (n \geq M)$.

B is almost linear periodic, $\lambda(B)$ is the first component of a linear factor of B and we have $l_{\text{def}}(F) \leq l_{\text{def}}(B) \leq \max\{M, l_{\text{def}}(F)\}$.
Almost linear periodicity of the matrix of first components

Lemma

Let \(B \in D^{r \times r} \) be irreducible.

- \(F \) is almost linear periodic. We have

\[
\text{lfac}(F)_{ij} = \lambda(B)_1 > 0 \quad (i, j \in [r]).
\]

Moreover, \(\text{lper}(F) \) and \(\lambda(B) \) can be computed in \(O(r^3) \) time.
Almost linear periodicity of the matrix of first components

Lemma

Let \(B \in \mathcal{D}^{r \times r} \) be irreducible.

- \(F \) is almost linear periodic. We have

\[
\text{lfac}(F)_{ij} = \lambda(B)_1 > 0 \quad (i, j \in [r]).
\]

Moreover, \(\text{lper}(F) \) and \(\lambda(B) \) can be computed in \(O(r^3) \) time.

- The sequence \((S_n)_{n \in \mathbb{N}} \) is ultimately constant, i.e., there is some \(M \in \mathbb{N} \) with

\[
S_n = S_M \quad (n \geq M).
\]
Lemma

Let $B \in \mathcal{D}^{r \times r}$ be irreducible.

- F is almost linear periodic. We have

\[\text{lfac}(F)_{ij} = \lambda(B)_1 > 0 \quad (i, j \in [r]). \]

Moreover, $\text{lper}(F)$ and $\lambda(B)$ can be computed in $O(r^3)$ time.

- The sequence $(S_n)_{n \in \mathbb{N}}$ is ultimately constant, i.e., there is some $M \in \mathbb{N}$ with

\[S_n = S_M \quad (n \geq M). \]

- B is almost linear periodic, $\lambda(B)_1$ is the first component of a linear factor of B and we have

\[\text{ldef}(F) \leq \text{ldef}(B) \leq \max\{M, \text{ldef}(F)\}. \]
Our third primitivity criterion

Theorem
Let \(A \in \mathcal{P}[X]^{r \times r} \) have positive degree. Then the following statements are equivalent:

(i) \(A \) is \(\mathcal{P}_+[X] \)-primitive.

(ii)
\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
\(A \) is \(\mathcal{P}_+\mathcal{X} \)-irreducible.
\((\lambda(s(A))^1,1) \) is a linear factor of \(s(A) \) and \(\lambda(s(A))^1 > 0 \).

(iii)
\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
\(s(A) \) admits a linear factor in \(\mathbb{Q}^\times\{1\} \).

(iv)
\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
\(s(A) \) is \(\mathbb{Q} \)-primitive.
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.
(ii) A has the following properties:
 ▶ $\kappa_0(A)$ is \mathcal{P}_+-primitive.
Our third primitivity criterion

Theorem
Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.
(ii) A has the following properties:
 ▶ $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 ▶ $\kappa_1(A)$ is nonzero.

(iii) A has the following properties:
 ▶ $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 ▶ $\kappa_1(A)$ is nonzero.
 ▶ $s(A)$ admits a linear factor in $\mathbb{Q}_>0 \times \{1\}$.

(iv) A has the following properties:
 ▶ $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 ▶ $\kappa_1(A)$ is nonzero.
 ▶ $s(A)$ is \mathbb{Q}-primitive.
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:

- $\kappa_0(A)$ is \mathcal{P}_+-primitive.
- $\kappa_1(A)$ is nonzero.
- A is $\mathcal{P}_+[X]$-irreducible.
Our third primitivity criterion

Theorem
Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:

▶ $\kappa_0(A)$ is \mathcal{P}_+-primitive.
▶ $\kappa_1(A)$ is nonzero.
▶ A is $\mathcal{P}_+[X]$-irreducible.
▶ $(\lambda(s(A))_1, 1)$ is a linear factor of $s(A)$ and $\lambda(s(A))_1 > 0$.
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - A is $\mathcal{P}_+[X]$-irreducible.
 - $(\lambda(s(A))_1, 1)$ is a linear factor of $s(A)$ and $\lambda(s(A))_1 > 0$.

(iii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
Our third primitivity criterion

Theorem

Let \(A \in \mathcal{P}[X]^{r \times r} \) have positive degree. Then the following statements are equivalent:

(i) \(A \) is \(\mathcal{P}_+[X] \)-primitive.

(ii) \(A \) has the following properties:

- \(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
- \(\kappa_1(A) \) is nonzero.
- \(A \) is \(\mathcal{P}_+[X] \)-irreducible.
- \((\lambda(s(A)))_1, 1) \) is a linear factor of \(s(A) \) and \(\lambda(s(A))_1 > 0 \).

(iii) \(A \) has the following properties:

- \(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
- \(\kappa_1(A) \) is nonzero.
Our third primitivity criterion

Theorem

Let \(A \in \mathcal{P}[X]^{r \times r} \) have positive degree. Then the following statements are equivalent:

(i) \(A \) is \(\mathcal{P}_+[X] \)-primitive.
(ii) \(A \) has the following properties:
 - \(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
 - \(\kappa_1(A) \) is nonzero.
 - \(A \) is \(\mathcal{P}_+[X] \)-irreducible.
 - \((\lambda(s(A))_1, 1) \) is a linear factor of \(s(A) \) and \(\lambda(s(A))_1 > 0 \).
(iii) \(A \) has the following properties:
 - \(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
 - \(\kappa_1(A) \) is nonzero.
 - \(s(A) \) admits a linear factor in \(\mathbb{Q}_{>0} \times \{1\} \).
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:

- $\kappa_0(A)$ is \mathcal{P}_+-primitive.
- $\kappa_1(A)$ is nonzero.
- A is $\mathcal{P}_+[X]$-irreducible.
- $(\lambda(s(A))_1, 1)$ is a linear factor of $s(A)$ and $\lambda(s(A))_1 > 0$.

(iii) A has the following properties:

- $\kappa_0(A)$ is \mathcal{P}_+-primitive.
- $\kappa_1(A)$ is nonzero.
- $s(A)$ admits a linear factor in $\mathbb{Q}_{>0} \times \{1\}$.

(iv) A has the following properties:
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - A is $\mathcal{P}_+[X]$-irreducible.
 - $(\lambda(s(A))_1, 1)$ is a linear factor of $s(A)$ and $\lambda(s(A))_1 > 0$.

(iii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - $s(A)$ admits a linear factor in $\mathbb{Q}_0 \times \{1\}$.

(iv) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
Our third primitivity criterion

Theorem

Let \(A \in \mathcal{P}[X]^{r \times r} \) have positive degree. Then the following statements are equivalent:

(i) \(A \) is \(\mathcal{P}_+[X] \)-primitive.

(ii) \(A \) has the following properties:

\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
\(A \) is \(\mathcal{P}_+[X] \)-irreducible.
\((\lambda(s(A))_1, 1) \) is a linear factor of \(s(A) \) and \(\lambda(s(A))_1 > 0 \).

(iii) \(A \) has the following properties:

\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
\(s(A) \) admits a linear factor in \(\mathbb{Q}_{>0} \times \{1\} \).

(iv) \(A \) has the following properties:

\(\kappa_0(A) \) is \(\mathcal{P}_+ \)-primitive.
\(\kappa_1(A) \) is nonzero.
Our third primitivity criterion

Theorem

Let $A \in \mathcal{P}[X]^{r \times r}$ have positive degree. Then the following statements are equivalent:

(i) A is $\mathcal{P}_+[X]$-primitive.

(ii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - A is $\mathcal{P}_+[X]$-irreducible.
 - $(\lambda(s(A))_1, 1)$ is a linear factor of $s(A)$ and $\lambda(s(A))_1 > 0$.

(iii) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - $s(A)$ admits a linear factor in $\mathbb{Q}_{>0} \times \{1\}$.

(iv) A has the following properties:
 - $\kappa_0(A)$ is \mathcal{P}_+-primitive.
 - $\kappa_1(A)$ is nonzero.
 - $s(A)$ is \mathcal{Q}-primitive.
Miscellaneous remarks

- Let \(A \in P[X]^{r \times r} \) with \(\text{deg}(A) > 0 \). If \(A \) is \(P_+[X] \)-primitive then

\[
s(A^{\text{ldef}(s(A)) + \text{lper}(s(A))}) \in Q^{r \times r}.
\]

It is well-known that every irreducible matrix over the standard max-plus algebra has a unique eigenvalue (see Baccelli – Cohen – Olsder – Quadrat, Synchronization and Linearity (1992)).

On the other hand, the irreducible matrix

\[
\begin{pmatrix}
0 & 0 \\
1 & 0 \\
0 & -\infty \\
0 & 0
\end{pmatrix}
\]

\(\in D^{2 \times 2} \) does not have an eigenvalue.
Let $A \in \mathcal{P}[X]^{r \times r}$ with $\deg(A) > 0$. If A is $\mathcal{P}_+[X]$-primitive then
\[
s(A^{\text{ldef}}(s(A)) + \text{lper}(s(A))) \in Q^{r \times r}.
\]
The converse does not hold: Let $A = X^2 + X \in \mathbb{R}_{\geq 0}[X]$. Then
\[
s(A) = (2, 1) \in Q, \quad \text{ldef}(s(A)) = 0, \quad \text{lper}(s(A)) = 1,
\]
Let $A \in \mathcal{P}[X]^{r \times r}$ with $\deg(A) > 0$. If A is $\mathcal{P}_+[X]$-primitive then

$$s(A^{\text{ldef}(s(A)) + \text{lper}(s(A))}) \in \mathbb{Q}^{r \times r}.$$

The converse does not hold: Let $A = X^2 + X \in \mathbb{R}_{\geq 0}[X]$. Then

$$s(A) = (2, 1) \in \mathbb{Q}, \quad \text{ldef}(s(A)) = 0, \quad \text{lper}(s(A)) = 1,$$

but A is not $\mathbb{R}_{> 0}[X]$-primitive.
Let $A \in \mathcal{P}[X]^{r \times r}$ with $\deg(A) > 0$. If A is $\mathcal{P}_+[X]$-primitive then

$$s(A^{\text{ldef}(s(A))+\text{lper}(s(A))}) \in Q^{r \times r}.$$

The converse does not hold: Let $A = X^2 + X \in \mathbb{R}_{\geq 0}[X]$. Then $s(A) = (2, 1) \in Q$, $\text{ldef}(s(A)) = 0$, $\text{lper}(s(A)) = 1$, but A is not $\mathbb{R}_{>0}[X]$-primitive.

It is well-known that every irreducible matrix over the standard max-plus algebra has a unique eigenvalue (see Baccelli – Cohen – Olsder – Quadrat, Synchronization and Linearity (1992)).
Let $A \in \mathcal{P}[X]^{r \times r}$ with $\deg(A) > 0$. If A is $\mathcal{P}_+[X]$-primitive then

$$s(A^{\text{ldf}(s(A))} + \text{lper}(s(A))) \in \mathbb{Q}^{r \times r}.$$

The converse does not hold: Let $A = X^2 + X \in \mathbb{R}_{\geq 0}[X]$. Then

$$s(A) = (2, 1) \in \mathbb{Q}, \quad \text{ldf}(s(A)) = 0, \quad \text{lper}(s(A)) = 1,$$

but A is not $\mathbb{R}_{> 0}[X]$-primitive.

It is well-known that every irreducible matrix over the standard max-plus algebra has a unique eigenvalue (see Baccelli – Cohen – Olsder – Quadrat, Synchronization and Linearity (1992)). On the other hand, the irreducible matrix

$$\begin{pmatrix} (0, 0) & (1, 0) \\ (0, 0) & (-\infty, 0) \end{pmatrix} \in \mathcal{D}^{2 \times 2}$$

does not have an eigenvalue.
The maximal cycle mean weight need not be a linear factor of an irreducible matrix: The matrix

$$B = \begin{pmatrix} e & (1, 0) \\ \varepsilon & e \end{pmatrix} \in \mathcal{D}^{2 \times 2}$$

is irreducible, and we have $\lambda(B) = (\frac{1}{2}, 0)$,
The maximal cycle mean weight need not be a linear factor of an irreducible matrix: The matrix

\[B = \begin{pmatrix} e & (1, 0) \\ e & \varepsilon \end{pmatrix} \in D^{2 \times 2} \]

is irreducible, and we have \(\lambda(B) = (\frac{1}{2}, 0) \), and but this is not a linear factor of \(B \):
The maximal cycle mean weight need not be a linear factor of an irreducible matrix: The matrix

\[B = \begin{pmatrix} e & (1, 0) \\ e & \varepsilon \end{pmatrix} \in \mathcal{D}^{2 \times 2} \]

is irreducible, and we have \(\lambda(B) = (\frac{1}{2}, 0) \), and but this is not a linear factor of \(B \): A linear factor is \((\frac{1}{2}, 1) \).
A conjecture on the primitivity exponent

Conjecture

If $A \in \mathcal{P}[X]^{r \times r}$ is $\mathcal{P}_+[X]$-primitive then we have

$$\gamma_{\mathcal{P}_+[X]}(A) \leq \max \{2 \deg (A) - 1, 4r^2(r - 1) + 1\}.$$