Roadmap of the talk

- Synchronizing words
- The Road Coloring Theorem
- The Road Coloring Theorem for periodic graphs
- Application to Huffman compression
- The hybrid Černý-Road Problem
Synchronizing words

Synchronizing word (magic word, homing sequence, Rome word): a word w such that all paths labeled w terminate at the same vertex.

Synchronized automaton: automaton which has a synchronizing word.

The automaton on the right is synchronized. The word RRR is synchronizing.
The solitaire game

One pebble on each state.
The solitaire game: one plays B
The solitaire game: one plays R

One plays R
The solitaire game: one plays B

One plays B
A directed graph with constant out-degree is **road colorable** if there is a coloring of its edges such that

- the edges going out of a vertex have distinct colors;
- there is a synchronizing word.

A graph is **aperiodic** if it is strongly connected and the \(\text{gcd of the cycle lengths is 1} \).

A strongly connected graph which has a synchronized coloring is aperiodic.

A graph is **admissible** if it is strongly connected, aperiodic and has constant out-degree.

Theorem [A. Trahtman 2007]

Any admissible graph is road colorable.
Applications

- **lossless source coding**: the Huffman decoder can be chosen synchronized, hence resistant against errors.

- **communication protocols**: test sequences to check whether a protocol conforms to its specification.

- **symbolic dynamics**: for two aperiodic shifts of finite type X, Y with the same entropy, there exists a factor map $\varphi : X \to Y$ which is almost one-to-one. (invertible on ”typical” sequences, i.e. on bi-infinite sequences which contain a synchronizing word infinitely often to the left and to the right).
A synchronizable pair of states in an automaton is a pair of states (p, q) such that there is a word w with $p \cdot w = q \cdot w$.

A stable pair of states in an automaton is a pair of states (p, q) such that, for any word u, $(p \cdot u, q \cdot u)$ is a synchronizable pair.

The stable pair congruence is the relation defined on the set of states by $p \equiv q$ if (p, q) is a stable pair.

Lemma [Culik, Karhumäki, Kari, 2002]

If the quotient of \mathcal{A} by a stable pair congruence is colorable, then \mathcal{A} is colorable.
Algorithm for Road Coloring

FindColoring (aperiodic automaton A, quotient automaton B)

1. $B \leftarrow A$
2. **while** (size(B) > 1)
 3. **do** Update(B)
 4. $B, (s, t) \leftarrow \text{FindStablePair}(B)$
 5. lift the coloring up from B to the automaton A
 6. $B \leftarrow \text{Merge}(B, (s, t))$
3. return A
We start with some coloring and fix a color (red). The **level** of a state is its distance to the red cycle of its cluster. **Maximal states** are states of maximal level.
Finding a coloring which has a stable pair

Lemma [Trahtman 2007]
If all maximal states belong to the same tree, then there is a stable pair.
Proof of Trahtman’s lemma

Lemma [Trahtman 2007]

If all maximal states belong to the same tree, then there is a stable pair. A minimal image \(I = Q \cdot w \) is an image minimal for set inclusion. For any word \(u \), we have \(I \cdot u \) is a minimal image.

Proof.

Let \(I \) be a minimal image and \(\ell \) be the maximal level. By irreducibility, it contains a maximal state \(p \) in a tree on a cycle \(C \). If there is \(q \neq p \) maximal in \(I \), then \(|I \cdot a^\ell| < |I| \) (contradiction). Let \(m \) be a common multiple of the lengths of all red cycles. Let \(s_0 \) be the predecessor of \(r \) in \(C \) and \(s_1 \) the child of \(r \) containing \(p \). Let \(J = I \cdot a^{\ell-1} \) and \(K = J \cdot a^m \). We have \(J = \{s_1\} \cup R \) with \(R \subset 0\)-level and \(K = \{s_0\} \cup R \).
Proof of Trahtman’s lemma (2)

Lemma [Trahtman 2007]
If all maximal states belong to the same tree, then there is a stable pair.

A minimal image \(I = Q \cdot w \) is an image minimal for set inclusion. For any word \(u \), we have \(I \cdot u \) is a minimal image.

Proof.
Let \(s_0 \) be the predecessor of \(r \) in \(C \) and \(s_1 \) the child of \(r \) containing \(p \).
Let \(J = I \cdot a^{\ell-1} \) and \(K = J \cdot a^m \).
We have \(J = \{ s_1 \} \cup R \) with \(R \subseteq 0\text{-level} \) and \(K = \{ s_0 \} \cup R \).
Let \(w \) a word of minimal rank. For any word \(v \), \(|J \cdot vw| = |K \cdot vw| = |I| \).
We claim that the set \((J \cup K) \cdot vw\) is a minimal image.
Indeed, \(J \cdot vw \subseteq (J \cup K) \cdot vw \subseteq Q \cdot vw \). (all 3 are equal).
But \((J \cup K) \cdot vw = R \cdot vw \cup s_0 \cdot vw \cup s_1 \cdot vw \).
This forces \(s_0 \cdot vw = s_1 \cdot vw \).
Thus \((s_0, s_1)\) is a stable pair.
Finding a stable pair with a sequence of flips

A **flip**: an exchange of the labels (with one a) of two edges going out of some state.

Make a **sequence of flips** such that

- either all maximal states belong to a same tree,
- or the number N_0 of 0-level states increases

We consider several cases corresponding to the geometry of the automaton.
Case 1: The maximal level is zero

- If the set of outgoing edges of each state is a bunch, then there is only one red cycle, the graph is not aperiodic.
- Let p with $p \xrightarrow{a} q$ and $p \xrightarrow{b} r$ and $q \neq r$. We flip these edges. We get a unique maximal tree, hence a stable pair.
Finding a stable pair with a sequence of flips (2)

Case 1: The maximal level is zero

- If the set of outgoing edges of each state is a bunch, then there is only one red cycle, the graph is not aperiodic.
- Let p with $p \xrightarrow{a} q$ and $p \xrightarrow{b} r$ and $q \neq r$. We flip these edges. We get a unique maximal tree, hence a stable pair.
Case 2: The maximal level is $\ell > 0$.
Let p maximal, r its root, and $t \xrightarrow{b} p$.
We denote $u = t \cdot a$.

- Case 2.1. If t is not in the same cluster as r, or if t has a positive level and does not belong to the a-path from p to r, we flip $t \xrightarrow{b} p$ and $t \xrightarrow{a} u$ and get an automaton which has a unique maximal tree.
Case 2: The maximal level is $\ell > 0$.
Let p maximal, r its root, and $t \xrightarrow{b} p$.
We denote $u = t \cdot a$.

- Case 2.2. If t belongs to the a-path from p to r, we flip $t \xrightarrow{b} p$ and $t \xrightarrow{a} u$ and increase the number of N_0 of 0-level states.
Case 2: The maximal level is $\ell > 0$.

- Case 2.3. We assume that t belongs to the cycle containing r. Let k_1 be the length of the simple a-path from r to t and k_2 the length of the simple a-path from u to r.

- If $k_2 > \ell$, we flip the edges $t \xrightarrow{b} p$ and $t \xrightarrow{a} u$ and get an automaton which has a unique maximal tree.
Case 2.3 : The maximal level is $\ell > 0$, $t \in C$.

- If $k_2 < \ell$, we flip the edges $t \xrightarrow{b} p$ and $t \xrightarrow{a} u$ and get an automaton which has strictly more states of null level since $k_1 + \ell + 1 > k_1 + k_2 + 1$.
Finding a stable pair with a sequence of flips (7)

Case 2.3 : The maximal level is $\ell > 0$, $t \in C$.

- If $k_2 = \ell$, let q be the predecessor of r on the cycle, let s be the child of r ascendant of p in the maximal tree T.
- If q has no bunch, there are edges $q \xrightarrow{a} r$ and $q \xrightarrow{c} v$ with $v \neq r$.
 We flip these edges. If r belongs to the new red cycle, N_0 increases.
 If not, level$(r) \geq 1$ in the new automaton and thus the new automaton has a unique maximal tree.
Case 2.3 : The maximal level is $\ell > 0$, $t \in C$.

- If $k_2 = \ell$, let q be the predecessor of r on the cycle, let s be the child of r descendant of p in the maximal tree T.
- If q and s have bunches, (q, s) is a stable pair.
Case 2.3: The maximal level is $\ell > 0$, $t \in C$.

- We have $k_2 = \ell$. If q has a bunch and s not, there are edges $s \xrightarrow{a} r$ and $s \xrightarrow{c} \nu$, with $\nu \neq r$. If there is an a-path from ν to s, we flip the two edges, creating a new red cycle, which increases N_0.
Case 2.3: The maximal level is $\ell > 0$, $t \in C$.

- We have $k_2 = \ell$. If q has a bunch and s not. There is no a-path from v to s and $\text{level}(v) > 0$, we flip $s \xrightarrow{a} r$ and $s \xrightarrow{c} v$.
Case 2.3 : The maximal level is $\ell > 0$, $t \in C$.

- We have $k_2 = \ell$. If q has a bunch and s not. We assume that $\text{level}(v) = 0$, and v is in another cluster, we flip $s \xrightarrow{a} r$ and $s \xrightarrow{c} v$ and also $t \xrightarrow{a} u$ and $t \xrightarrow{b} p$.
Case 2.3: The maximal level is $\ell > 0$, $t \in C$.

- We have $k_2 = \ell$. If q has a bunch and s not. We assume that $\text{level}(v) = 0$, and v is in another cluster, we flip $s \xrightarrow{a} r$ and $s \xrightarrow{c} v$ and also $t \xrightarrow{a} u$ and $t \xrightarrow{b} p$.

![Diagram](image-url)
Case 2.3.3 : The maximal level is $\ell > 0$, $t \in C$, $k_2 = \ell$

- If q has a bunch and s not, and there are edges $s \xrightarrow{a} r$ and $s \xrightarrow{c} v$, with $v \neq r$ in C. Let us denote by k_3 the length of the simple a-path from u to v.

Since $v \neq r$, we have $k_3 \neq k_2$. Hence $k_3 < \ell$ or $k_3 > \ell$. We flip the edges $s \xrightarrow{a} r$ and $s \xrightarrow{c} v$ and proceed as in Case 2.3.1 or 2.3.2.
Complexity of the Road Coloring problem

The complexity of Trathman’s algorithm is cubic $O(\text{card } A \times n^3)$.

Theorem [B., Perrin 2008 preprint]

One can compute a synchronized coloring of an n-state admissible graph in time $O(\text{card } A \times n^2)$.
The period of a graph is the gcd of the lengths of the cycles. The rank of a colored graph \((Q, E)\) is the minimal cardinality of the sets \(Q \cdot u\) for all colored sequences \(u\).

Theorem [B., Perrin preprint 2008, Budzban, Feinsilver 2011]

Any strongly connected with constant outgoing arity has a coloring whose rank is equal to the period of the graph.
Application to Huffman compression

\[\begin{align*}
 a & : \frac{1}{16}, \quad b : \frac{1}{16}, \quad c : \frac{1}{8}, \quad d : \frac{1}{16}, \quad e : \frac{1}{16}, \\
 f & : \frac{1}{8}, \quad g : \frac{1}{8}, \quad h : \frac{1}{8}, \quad i : \frac{1}{4} \\
\end{align*} \]

Encoding: \(d \leftrightarrow \text{RBRR} \)
A non synchronized Huffman decoder.

When the lengths of the codewords in are relatively prime, there is another Huffman code (with the same length distribution) with a synchronized decoder.
Application to Huffman compression (3)
Application to Huffman compression (3)
Quotient + flip at 356
Lifting up the flips
Lifting up the flips

The sequence \textbf{RBR} is a homing sequence.

The Road Coloring algorithm makes the Huffman decoder synchronized.
Volkov raised the following question:

What is the minimum length of a synchronizing word for a synchronized coloring of an aperiodic graph?

We conjecture that a synchronized coloring such that the coloring is moreover one-cluster can be obtained with the same complexity. This guarantees a minimum length of a synchronizing word of a length at most quadratic in the number of vertices.